Coulomb excitation 2014Br05

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Balraj Singh	NDS 130, 21 (2015)	15-Jul-2015						

2014Br05: Beam=¹⁸²Hg at 2.85 MeV/nucleon from REX-ISOLDE-CERN facility. Targets=2.3 mg/cm² thick ¹²⁰Sn, 1.1 mg/cm² thick ¹⁰⁷Ag, and 2 mg/cm² thick ¹¹²,¹¹⁴Cd. Measured Eγ, Iγ, γγ-coin, (projectile particle)γ-coin, (target particle)γ-coin, K x-ray intensities using MINIBALL array for γ rays and double-sided silicon strip detectors (DSSSDs) for particle detection. Deduced γ-ray yields, E2 matrix elements, quadrupole invariants <Q²> and <cos(3δ)> by GOSIA analysis. Comparison with calculations using beyond mean field and interacting-boson based models. Results interpreted within a two-state mixing model. In GOSIA analysis, known spectroscopic data for branching ratios, level lifetimes, and conversion coefficients were used. Some of results may have been taken from β-decay studies of ¹⁸²Tl by E. Rapisarda et al. (to be published; reference 15 in 2014Br05).

¹⁸²Hg Levels

A third 2⁺ level is also mentioned in Author e-mail reply of May 16, 2014; only branching ratio data are supplied, not the level energy.

E(level)	J^{π}	T _{1/2}	Comments					
0	0+		Based on deduced quadrupole invariants $\langle Q^2 \rangle$ and $\langle \cos(3\delta) \rangle$, ground state is weakly deformed with $\beta \approx 0.15$; consistent with oblate-like deformation.					
335	0^+		Based on deduced quadrupole invariants $\langle Q^2 \rangle$ and $\langle \cos(3\delta) \rangle$, first excited state is prolate deformed					
352	2+	29.7 ps +13-18	T _{1/2} : deduced by evaluator from E2 matrix element from g.s., assuming 100% branch for 352γ . E2 matrix element (0,0 ⁺ to $352,2^+$)=+1.29 +4-3 (2014Br05). B(E2)(from 0,0 ⁺)=1.66 +11-7. E2 matrix element ($335,0^+$ to $352,2^+$)=-2.68 +15-13 (2014Br05). B(E2)(from $335,0^+$)=7.2 +7-8. Diagonal E2 matrix element ($352,2^+$ to $352,2^+$)=-0.04 +130-140 (2014Br05).					
548	2+	9.5 ps +27-22	 T_{1/2}: deduced by evaluator from B(E2)=0.37 +4-3 from g.s. and branching ratios supplied by authors in May 16, 2014 e-mail reply. Using B(E2)=2.9 7 for 335,0⁺ to 548,2⁺ level gives T_{1/2}=9.0 ps +60-37, consistent with that obtained from B(E2) value for g.s. to 548 level. E2 matrix element (0,0⁺ to 548,2⁺)=-0.61 <i>3</i> (2014Br05). B(E2)(from 0,0⁺)=0.37 +4-3. E2 matrix element (335,0⁺ to 548,2⁺)=-1.7 <i>2</i> (2014Br05). B(E2)(from 335,0⁺)=2.9 <i>7</i>. E2 matrix element (352,2⁺ to 548,2⁺)=-2.2 <i>4</i> (2014Br05). B(E2)(from 352,2⁺)=0.97 +38-32. 					
613	4+	26.1 ps +9-8	 Diagonal E2 matrix element (548,2⁺ to 548,2⁺)=+0.8 +10-6 (2014Br05). T_{1/2}: deduced by evaluator from E2 matrix element from 352,2⁺, assuming 100% branch for 261γ. E2 matrix element (352,2⁺ to 613,4⁺)=+3.71 6 (2014Br05). B(E2)(from 352,2⁺)=2.75 9. E2 matrix element (548,2⁺ to 613,4⁺)=+3.1 3 (2014Br05). B(E2)(from 548,2⁺)=1.9 +4-3. 					
946 1125	6+ 4+							
			γ (¹⁸² Hg)					
E _i (level)	J_i^{π}	E_{γ} I_{γ}	$\underline{E}_{f} \underline{J}_{f}^{\pi}$ Mult. α^{\ddagger} Comments					
335 352 548	0^+ 2^+ 2^+	335 352 196 8.8 [†] 32	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					

Continued on next page (footnotes at end of table)

				(Coulomb excitation		2014Br05 (continued)
						γ (¹⁸² Hg) (continued)
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	α^{\ddagger}	Comments
		_					decay results yet to be published. E_{γ} : γ ray reported on the basis of ¹⁸² Tl decay results yet to be published (reference 15 in 2014Br05).
548	2^{+}	213	6.5 [†] 23	335 0+	[E2]	0.315	
		548	100 [†]	0 0+	[E2]	0.0217	
613	4+	261		352 2+	E2	0.1619	α : for Ey=261.5 3.

[†] From γ -branching ratio data received in e-mail reply of May 16, 2014 from K. Wrzosek Lipska. These values are from reference 15 (to be published) in 2014Br05. Also branching ratio from a third 2⁺ state is given as: I γ (third 2⁺ to 352,2⁺)/I γ (third 2⁺ to 335,0⁺)=0.70 22. Energy of the third 2⁺ level and associated γ -ray energies are not stated.

[‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Coulomb excitation 2014Br05

Level Scheme

Intensities: Relative photon branching from each level

 $^{182}_{\ 80} Hg_{102}$