⁹⁶Mo(⁸⁸Sr,2nγ) 2010Sc03

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Balraj Singh	NDS 130, 21 (2015)	15-Jul-2015			

2010Sc03 (also 2009Gr09): E=310 MeV ⁸⁸Sr beam produced at the Accelerator laboratory at Jyvaskyla. The γ rays were detected with the JUROGAM array which consisted of 43 Compton-suppressed high-purity Ge detectors. Recoils were separated by the Recoil Ion Transport Unit (RITU) gas-filled separator and measured by a MultiWire Proportional Counter, and two double-sided silicon strip detectors (DSSSDs). The α particles from decaying recoils were detected by the DSSSDs. Measured E γ , I γ , $\gamma \alpha$ -coin, particle spectra, lifetimes using the Recoil Distance Doppler-Shift method. Deduced B(E2), quadrupole moments, deformation parameters. 2009Gr09 reported lifetime data for five yrast positive-parity states from 2⁺ to 10⁺.

The level scheme is taken by 2010Sc03 from 1995Bi12, with a slight modification. Band structures are taken from 1995Bi12. Additional information 1.

All data are from 2010Sc03, unless otherwise stated.

¹⁸²Hg Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	Comments
0.0	0^{+}		
351.7 [@] 3	2+	29.2 ps 16	T _{1/2} : other: 28.4 ps 21 (2009Gr09). Q(transition)=4.1 2, β_2 =0.15 1.
548.3 ^{&} 5	2^{+}		
613.2 ^{&} 4	4+	25.7 ps 8	T _{1/2} : other: 24.7 ps 10 (2009Gr09). Q(transition)=7.4 2, β_2 =0.26 1.
946.5 ^{&} 5	6+	6.3 ps 4	T _{1/2} : other: 5.68 ps 35 (2009Gr09). Q(transition)=8.0 8, β_2 =0.29 3.
1124.8 [@] 8	(4 ⁺)		J^{π} : proposed in 2010Sc03 as 4 ⁺ member of oblate band.
1296.4 5		<53 ps	
1360.2 ^{&} 6	8+	1.94 ps 21	T _{1/2} : other: 2.01 ps 21 (2009Gr09). Q(transition)=8.4 9, β_2 =0.30 3.
1384.5 ^b 7		13.5 ps 16	
1532.8 ^d 6			
1574.0 [°] 8			
1763.5 <mark>6</mark> 7		2.63 ps 35	
1768.4 ^{<i>a</i>} 6	(5 ⁻)	24 ps 8	
1823.8 10			
1847.0 ^{C} 7	10+	0.998 ps 22	T _{1/2} : other: 0.83 ps 21 (2009Gr09). Q(transition)=7.7 11, β_2 =0.28 6.
1946.5 <mark>d</mark> 7			
2007.7 ^{<i>a</i>} 6 2012.0 ^{<i>c</i>} 9	(7 ⁻)	25.9 ps 14	Q(transition)=6.6 12, β_2 =0.24 4.
2210.8 ^b 7		2.1 ps 16	
2313.8 [°] 10		15.1 ps 22	
2323.6 ^{<i>a</i>} 6	(9 ⁻)	6.31 ps 35	Q(transition)=7.6 9, β_2 =0.27 3.
2399.5 ^{&} 8	12^{+}		
2413.1 ^d 9			
2686.0^{c} 11 2713.6 ^a 7 2723 ^b 3	(11 ⁻)	2.15 ps 21	Q(transition)=8.4 12, β_2 =0.30 4.
2929.7 <mark>d</mark> 14			
3010.2 ^{&} 10 3110.4 ^c 12	14+		

⁹⁶Mo(⁸⁸Sr,2nγ) 2010Sc03 (continued)

¹⁸²Hg Levels (continued)

E(level) [†]	J ^π ‡	$T_{1/2}^{\#}$		Comments
3165.7 ^{<i>a</i>} 8 3291 ^{<i>b</i>} 4 3486.8 ^{<i>d</i>} 17	(13 ⁻)	0.97 ps 35	Q(transition)=8.0 28, β_2 =0.29 10.	
3647.2 ^{<i>a</i>} 10 3671.6 ^{<i>&</i>} 12 4140.6 ^{<i>a</i>} 12 4378.4 ^{<i>&</i>} 15	(15 ⁻) 16 ⁺ (17 ⁻) 18 ⁺	<2.7 ps		

[†] From least-squares fit to $E\gamma$ data.

[‡] From 1995Bi02. Tentative assignment of negative parity for band based on (5) is from systematics (2010Sc03).

[#] From recoil-distance Doppler-shift (RDDS) method (2010Sc03).

[@] Band(A): $K^{\pi}=0^+$, oblate band.

[&] Band(B): $K^{\pi}=2^+$, prolate band.

^{*a*} Band(C): Possible K=0 octupole band.

^{*b*} Band(D): $\Delta J=(2)$ band.

^{*c*} Band(E): $\Delta J=(2)$ band.

^{*d*} Band(F): $\Delta J=(2)$ band.

$\gamma(^{182}\text{Hg})$

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}
^x 105.2 ^a 19	2.6 6				
^x 127.0 ^a 18	3.3 6				
^x 130.4 ^a 16	2.3 5				
^x 133.8 ^a 14	2.5 5				
^x 138.2 ^a 12	1.7 4				
^x 149.7 ^a 12	2.0 6				
^x 152.4 ^a 13	1.6 6				
^x 169.7 ^a 9	2.4 5				
^x 174.4 ^a 9	2.4 5				
^x 178.7 ^a 9	2.8 5				
183.9 8	4.2 6	2007.7	(7^{-})	1823.8	
^x 187.2 ^a 9	3.2 5				
^x 199.5 ^a 10	1.9 4				
^x 209.9 ^a 5	3.4 6				
^x 232.4 ^a 6	2.0 5				
239.4 4	11.7 12	2007.7	(7 ⁻)	1768.4 (5-)
$x^{243.1}a_{6}$	2.0 4				
^x 247.8 ^a 5	2.3 5				
^x 251.9 ^a 5	2.9 5				
^x 257.2 ^a 5	5.4 8				
261.5 3	85 6	613.2	4^{+}	351.7 2	2+
$x^{280.8a}$ 4	5.57				
^x 292.0 ^a 5	3.8 6				
301.8 4	7.5 8	2313.8		2012.0	
^x 306.4 ^a 5	4.0 6				

				⁹⁶ Mo(⁸⁸ Sr,2nγ)		2010Sc03 (continued)
					γ (¹⁸² H	g) (continued)
${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	${ m J}_f^\pi$	
315.9 <i>4</i>	14.4 13	2323.6	(9-)	2007.7	(7-)	
320.9 5 333.1 3	5.1 5 72 5	946.5	6+	613.2	4+	
338.3 ^a 5 351.7 3	3.0 5 100	351.7	2+	0.0	0^{+}	
x369.5 ^a 16 372.2 5	3.7 26 9.7 18	2686.0		2313.8		
379.1 <i>4</i> ×383 3 ^{<i>a</i>} 6	7.2 9 2 5 5	1763.5		1384.5		
389.9 4	16.4 15	2713.6	(11 ⁻)	2323.6	(9 ⁻)	
411.9 ^{wc}		1946.5		1532.8		
413.7 <i>3</i>	54 <i>4</i>	1360.2	8+	946.5	6+	
424.4 5 $x439.0^{a} 7$	6.3 <i>9</i> 2.8 <i>6</i>	3110.4		2686.0		
$441.2^{@c}$	4 0 10	2012.0		1574.0		
447.0 7	4.910	2210.0		1760 5		
447.27 5	9.2# 13	2210.8	(10-)	1/63.5	(11-)	
452.1 4	15.3 15	3165.7	(13)	2/13.6	(11)	
462.0 5	8.1 11	3572.4		3110.4		
400.0 0	0.0 II	2413.1	(5-)	1940.3		
4/1.9 4	12.7 13	1/08.4	(3)	1290.4	(12^{-})	
481.5 0	24.2	1847.0	(13)	1260.2	(15)	
467.04	54 5 0 2 11	1647.0	(17^{-})	2647.2	(15^{-})	
495.4 J	9.5 11	4140.0	(17)	5047.2	(15)	
$x_{510}a$ Λ	3.09					
510 4	10 5	2722		2210.0		
512+ 3	12+ 5	2723		2210.8		
516.6+ 10	9 + 3	2929.7		2413.1		
x523.0 ^{<i>a</i>} 19	3.4 17					
527 4	1.6 16	1823.8		1296.4		
529.8 [@] C		2929.7		2399.5	12^{+}	
548.3 5	16.1 24	548.3	2+	0.0	0^{+}	
551.2 [@] c		2313.8		1763.5		
552.5 5	28 3	2399.5	12^{+}	1847.0	10^{+}	
557.1 9	5.3 14	3486.8		2929.7		
565.1 [@] c		2413.1		1847.0	10^{+}	
567.8.9	2.9.7	3291		2723	10	
576 5## 6	$6.7^{\ddagger \#}$ 10	1124.8	(Λ^+)	548 3	2+	
570.5° 0	$150^{b^{\pm}}$ 16	1522.9	(+)	046.5	2 (+	
580.5° + 4	15.00 + 10	1552.8		940.5	0	
586.30 4	15.00 16	1946.5		1360.2	8+	
x593.3 ^u 7	5.3.9				10	
610.7 6	173	3010.2	14+	2399.5	12+	
x616.2 ^u 10	3.29					
627.5 ⁰ 6	8.00 12	1574.0		946.5	6+	
627.5 ⁰ 6	8.0 ⁰ 12	2012.0		1384.5		
^x 634.7 ^a 16	2.4 8					
^x 640.7 ^a 14	2.2 8					
661.4 5	9.1 12	3671.6	16+	3010.2	14+	
682.2 10	2.2 6	1296.4		613.2	4+	
706.8 9	2.6 6	4378.4	18+	3671.6	16+	
748.2 5	9.8 <i>13</i>	1296.4		548.3	2+	
^x 753.9 ^a 10	2.7 7					

Continued on next page (footnotes at end of table)

		96 Mo(88 Sr,2n γ) 2010Sc03 (continued)								
		$\gamma(^{182}\text{Hg})$ (continued)								
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$E_f = J_f^{\pi}$	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$E_f = J_f^{\pi}$	
^x 765.4 ^a 14	1.6 7				955.2 [@] c		2313.8		1360.2 8+	
771.8 8	12.8 18	1384.5		613.2 4+	963.0 7	5.3 8	2323.6	(9 ⁻)	1360.2 8+	
(773.1 ^{&})		1124.8	(4^{+})	351.7 2+	^x 1011.3 ^a 15	2.2 6				
816.7 6	6.3 9	1763.5		946.5 6+	^x 1018.0 ^a 8	2.6 6				
^x 837.0 ^a 8	3.1 7				1060.9 7	3.2 6	2007.7	(7^{-})	946.5 6+	
840.0 [@] c		2686.0		1847.0 10+	1156.7 10	2.4 7	1768.4	(5 ⁻)	613.2 4+	
^x 844.8 ^a 7	6.0 10				^x 1200.0 ^a 16	2.1 6				
850.7 8	4.6 9	2210.8		1360.2 8+	$x_{1210}^{a} 3$	1.5 11				
867.5 10	2.5 6	2713.6	(11^{-})	1847.0 10+	^x 1222.8 ^a 23	1.7 8				
^x 917.7 ^a 10	3.1 7				^x 1241.7 ^a 22	1.5 7				

[†] From 2010Sc03. Branching ratios given in table VI of 2010Sc03 are deduced from relative intensities listed here from their table I. [‡] This γ ray is contaminated by transitions from other reaction channels (2010Sc03). [‡] This γ ray is contaminated by transitions from other reaction channels (2010Sc03).

[#] Placement revised by 2010Sc03 based on $\gamma\gamma$ coin evidence. Earlier tentative placement in 1995Bi02 from a 930 level is not confirmed in 2010Sc03, which also requires omitting the tentative 548 γ from a 1478 level.

[@] Weak γ from 1995Bi02, not listed in 2010Sc03.

[&] Expected γ to 352, 2⁺ level cannot be distinguished from strong 771.8 γ .

^{*a*} Assignment to ¹⁸²Hg nuclide is uncertain for this unplaced γ ray.

^b Multiply placed with undivided intensity.

^c Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

¹⁸²₈₀Hg₁₀₂

¹⁸²₈₀Hg₁₀₂