¹⁸²Hg ε decay (10.83 s) 2001Ib02

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	NDS 130, 21 (2015)	15-Jul-2015

Parent: ¹⁸²Hg: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=10.83$ s 6; $Q(\varepsilon)=4724$ 23; $\%\varepsilon+\%\beta^+$ decay=86.2 9

¹⁸²Hg-T_{1/2}: From ¹⁸²Hg Adopted Levels.

¹⁸²Hg-Q(ε): From 2012Wa38.

 182 Hg-% ε +% β ⁺ decay: % α =13.8 9 from 182 Hg Adopted Levels.

2001Ib02: measured E γ , I γ , $\gamma\gamma$, ce, ce(γ)-coin, $\gamma\gamma(t)$, (ce)(γ)(t) using a Si(Li) electron detector, a coaxial HPGe detector, a planar HPGe X-ray detector and a large Ge detector.

Others: 1974Ca28, 1970FiZZ. All the ten γ rays from 103.5 to 542.9 keV reported by 1974Ca28 are confirmed by 2001Ib02.

¹⁸²Hg α decay has been studied by 1993Wa03 and three α groups deexciting to g.s.; 171, 2⁺ and 422, 0⁺ levels in ¹⁷⁸Pt are reported at 5867 5, 5689 7, 5446 7.

¹⁸²Au Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	(2 ⁺)		
25.60 10	$(\leq 3)^{(+)}$		
62.90 10	$(1^+, 2^+)$		
98.97 <i>10</i>	(1^{+})		
100.71 12	$(0^+, 1^+, 2^+)$		J^{π} : 2001Ib02 give 1 ⁺ ,2 ⁺ .
127.00 11	$(1^+, 2^+)$		
129.49 7	$(1^{-},2^{-})$	≤50 ns	$T_{1/2}$: from $\gamma\gamma(t)$ or (ce)(γ)(t) (2001Ib02).
273.51 7	$(1^{-},2^{-})$		
308.97 14	$(\leq 3)^{(-)}$		
325.40 9	$(0^{-}, 1^{-}, 2^{-})$		
339.30 10	(1 ⁺)		
362.69 13	(1^+)		
482.01 12	$(0^+, 1^+, 2^+)$		
543.00 7	(1 ⁺)		

[†] From least-squares fit to $E\gamma$ data.

[‡] From Adopted Levels.

ε, β^+ radiations

E(decay)	E(level)	Iβ ⁺ ‡	I ε^{\ddagger}	$\log ft^{\dagger}$	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments
(4181 23)	543.00	16 2	35 4	≈4.2	51 5	av Eβ=1425 10; εK=0.554 4; εL=0.0960 7; εM+=0.03069 21
(4361 23)	362.69	3.9 4	7.0 6	≈4.9	10.9 10	I(ε+β ⁺): 55 9 (2001Ib02). av Eβ=1506 10; εK=0.525 4; εL=0.0908 7; εM+=0.02902 21
(4385 23)	339.30	2.3 3	4.1 4	≈5.2	6.4 7	I(ε+β ⁺): 12.1 <i>l</i> 6 (2001Ib02). av Eβ=1517 <i>l</i> 0; εK=0.521 <i>4</i> ; εL=0.0901 7; εM+=0.02881 2 <i>l</i>
(4415 23)	308.97	0.80 15	1.4 <i>3</i>	≈5.6	2.2 4	I(ε+β ⁺): 7.2 16 (2001Ib02). av Eβ=1531 10; εK=0.516 4; εL=0.0892 7; εM+=0.02853 21
(4595 23)	129.49	5.2 12	7.8 18	≈4.9	13 <i>3</i>	I(ε + β ⁺): 2.5 16 (2001Ib02). av E β =1612 10; εK=0.488 4; εL=0.0842 7; εM+=0.02691 20
(4625 23)	98.97	2.8 4	4.2 7	≈5.2	7.0 11	I(ε+β ⁺): 14 13 (2001Ib02). av Eβ=1626 10; εK=0.483 4; εL=0.0833 6; εM+=0.02664

¹⁸²Hg ε decay (10.83 s) 2001Ib02 (continued)

ϵ, β^+ radiations (continued)

Comments

E(decay) E(level)

20 I($\varepsilon + \beta^+$): 7 2 (2001Ib02).

[†] The values given here are considered by the evaluators as apparent $\varepsilon + \beta^+$ feedings due to a large energy gap of about 4 MeV between the $Q(\varepsilon)$ value and the uppermost known level at 543. The associated log *ft* values should be considered as approximate. The $\varepsilon + \beta^+$ feedings quoted by 2001Ib02 in their table 2 are consistently higher than the values given here since 2001Ib02 did not take into account the 15% α decay branch of ¹⁸²Hg decay.

 \ddagger For absolute intensity per 100 decays, multiply by 1.001 *11*.

$$\gamma(^{182}\mathrm{Au})$$

I γ normalization: I(γ +ce)(γ rays to g.s.)=100.

E_{γ}	$I_{\gamma}^{\#}$	E_i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult. [†]	α^{\ddagger}	$I_{(\gamma+ce)}^{\#}$	Comments
25.6 1	0.5 2	25.60	(≤3) ⁽⁺⁾	0.0	(2 ⁺)	[M1]	71.1 <i>13</i>	38 15	$ce(L)/(\gamma+ce)=0.757 \ 10;ce(M)/(\gamma+ce)=0.176 \ 4ce(N)/(\gamma+ce)=0.0439 \ 11;ce(O)/(\gamma+ce)=0.00806 \ 21;ce(P)/(\gamma+ce)=0.000544 \ 14\alpha(L)=54.6 \ 10; \ \alpha(M)=12.70 \ 24\alpha(N)=3.17 \ 6; \ \alpha(O)=0.582 \ 11;ce(D)=0.0202 \ 8$
30.5 1	3.7 7	129.49	(1 ⁻ ,2 ⁻)	98.97	(1 ⁺)	[E1]	2.09 4	11.5 21	$ce(L)/(\gamma+ce)=0.518 \ 6;$ $ce(M)/(\gamma+ce)=0.1238 \ 23$ $ce(N)/(\gamma+ce)=0.0296 \ 6;$ $ce(O)/(\gamma+ce)=0.00464 \ 10;$ $ce(P)/(\gamma+ce)=0.0001264 \ 25$ $\alpha(L)=1.60 \ 3; \ \alpha(M)=0.382 \ 7$ $\alpha(N)=0.0915 \ 16; \ \alpha(O)=0.01432$ $24; \ \alpha(P)=0.000390 \ 6$
37.8 1	0.4 2	100.71	(0 ⁺ ,1 ⁺ ,2 ⁺)	62.90	(1 ⁺ ,2 ⁺)	[M1]	22.5	11 5	ce(L)/(γ +ce)=0.736 8; ce(M)/(γ +ce)=0.171 4 ce(N)/(γ +ce)=0.0426 10; ce(O)/(γ +ce)=0.00782 18; ce(P)/(γ +ce)=0.000528 12 α (L)=17.3 3; α (M)=4.01 7 α (N)=0.999 16; α (O)=0.184 3; α (P)=0.01238 20
51.9 <i>l</i>	3.5 2	325.40	(0 ⁻ ,1 ⁻ ,2 ⁻)	273.51	(1 ⁻ ,2 ⁻)	M1	8.83	36 3	$\begin{array}{l} \alpha(L) = 0.01250 \ 20 \\ \alpha(L1) = 0.01250 \ 20 \\ \alpha(L1) = 0.01250 \ 20 \\ ce(L)/(\gamma + ce) = 0.690 \ 7; \\ ce(M)/(\gamma + ce) = 0.00390 \ 8; \\ ce(O)/(\gamma + ce) = 0.00734 \ 15; \\ ce(P)/(\gamma + ce) = 0.000495 \ 10 \\ \alpha(L) = 6.79 \ 11; \ \alpha(M) = 1.575 \ 24 \\ \alpha(N) = 0.392 \ 6; \ \alpha(O) = 0.0721 \ 11; \\ \alpha(P) = 0.00487 \ 8 \end{array}$
61.0 <i>1</i>	1.4 7	543.00	(1+)	482.01	(0+,1+,2+)	[M1]	5.50	9.4 47	$ce(L)/(\gamma+ce)=0.650 7;ce(M)/(\gamma+ce)=0.151 3ce(N)/(\gamma+ce)=0.0376 8;ce(O)/(\gamma+ce)=0.00691 14;$

¹⁸²Hg ε decay (10.83 s) 2001Ib02 (continued) γ (¹⁸²Au) (continued) $I_{\gamma}^{\#}$ Mult.[†] $I_{(\gamma+ce)}^{\#}$ α^{\ddagger} Eγ E_i (level) \mathbf{J}_i^{π} \mathbf{E}_{f} J_f^{π} Comments $ce(P)/(\gamma+ce)=0.000466 9$ α(L)=4.22 7; α(M)=0.981 15 $\alpha(N)=0.244$ 4; $\alpha(O)=0.0449$ 7; $\alpha(P)=0.003035$ 62.9 1 6.0 30 $(1^+, 2^+)$ 5.03 37 18 62.90 0.0 (2^+) [M1] $ce(L)/(\gamma+ce)=0.641$ 6; $ce(M)/(\gamma+ce)=0.149 3$ $ce(N)/(\gamma+ce)=0.0371$ 7; $ce(O)/(\gamma+ce)=0.00681$ 13; $ce(P)/(\gamma+ce)=0.000460 \ 9$ α(L)=3.86 6; α(M)=0.896 14 $\alpha(N)=0.223 4; \alpha(O)=0.0411 6;$ $\alpha(P)=0.00277~4$ 64.1 2 3.2 16 127.00 $(1^+, 2^+)$ $62.90 (1^+, 2^+)$ [M1] 4.76 8 199 $ce(L)/(\gamma+ce)=0.635$ 7; $ce(M)/(\gamma+ce)=0.147 \ 3$ $ce(N)/(\gamma+ce)=0.0367 8;$ $ce(O)/(\gamma+ce)=0.00675$ 15; $ce(P)/(\gamma+ce)=0.000455 \ 10$ $\alpha(L)=3.65$ 7; $\alpha(M)=0.848$ 15 $\alpha(N)=0.211$ 4; $\alpha(O)=0.0388$ 7; $\alpha(P)=0.002625$ 98.9 2 4.2 2 98.97 (1^{+}) 0.0 (2^+) [M1] 7.49 37 2 $ce(K)/(\gamma+ce)=0.724$ 7; $ce(L)/(\gamma+ce)=0.1219\ 23;$ $ce(M)/(\gamma+ce)=0.0283 6$ $ce(N)/(\gamma+ce)=0.00705$ 15; $ce(O)/(\gamma+ce)=0.00130 3;$ $ce(P)/(\gamma+ce)=8.75\times10^{-5}$ 18 $\alpha(K)=6.14 \ 10; \ \alpha(L)=1.035 \ 16;$ $\alpha(M) = 0.240 \ 4$ α (N)=0.0599 9; α (O)=0.01100 17; α(P)=0.000742 12 α (L3)exp<1.9×10⁻²; 103.9 2 23 2 $(1^{-},2^{-})$ 25.60 $(\leq 3)^{(+)}$ E1 0.377 129.49 32 3 α (L1)exp+ α (L2)exp<8×10⁻² $ce(K)/(\gamma+ce)=0.220 3;$ $ce(L)/(\gamma+ce)=0.0415$ 7; $ce(M)/(\gamma+ce)=0.00966$ 15 $ce(N)/(\gamma+ce)=0.00236$ 4; $ce(O)/(\gamma+ce)=0.000407$ 7; $ce(P)/(\gamma+ce)=1.82\times10^{-5}$ 3 $\alpha(K)=0.303$ 5; $\alpha(L)=0.0571$ 9; $\alpha(M) = 0.01331 \ 20$ α(N)=0.00326 5; α(O)=0.000560 9; $\alpha(P)=2.51\times10^{-5}$ 4 127.0 3 1.2 6 127.00 $(1^+, 2^+)$ 0.0 (2^+) (M1) 3.66 63 $ce(K)/(\gamma+ce)=0.645$ 6; $ce(L)/(\gamma+ce)=0.1081\ 20;$ $ce(M)/(\gamma+ce)=0.0251 5$ $ce(N)/(\gamma+ce)=0.00625$ 13; $ce(O)/(\gamma+ce)=0.001149\ 23;$ $ce(P)/(\gamma+ce)=7.75\times10^{-5}$ 16 $\alpha(K)=3.01$ 5; $\alpha(L)=0.504$ 8; α(M)=0.1169 19 $\alpha(N)=0.0291$ 5; $\alpha(O)=0.00536$ 9; $\alpha(P)=0.000362~6$ Mult.: possible assignment from intensity balance. 129.5 1 100 129.49 $(1^{-}, 2^{-})$ $0.0 \quad (2^+)$ E1 0.216 122 $\alpha(M) \exp = 7.7 \times 10^{-3}$ $ce(K)/(\gamma+ce)=0.1437$ 18;

 $^{182}_{79}\mathrm{Au}_{103}\text{--}4$

				182 Hg ε dec	cay (10.	83 s) 20	001Ib02 (co	ntinued)	
					$\gamma(^{182}$	² Au) (conti	inued)		
Eγ	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [†]	α^{\ddagger}	$I_{(\gamma+ce)}^{\#}$	Comments
									$\begin{array}{c} ce(L)/(\gamma+ce)=0.0260 \ 4;\\ ce(M)/(\gamma+ce)=0.00604 \ 9\\ ce(N)/(\gamma+ce)=0.001481 \ 22;\\ ce(O)/(\gamma+ce)=0.000257 \ 4;\\ ce(P)/(\gamma+ce)=1.226\times10^{-5} \ 18\\ \alpha(K)=0.1747 \ 25; \ \alpha(L)=0.0316\\ 5; \ \alpha(M)=0.00734 \ 11\\ \alpha(N)=0.00180 \ 3;\\ \alpha(O)=0.000313 \ 5;\\ \alpha(P)=1.491\times10^{-5} \ 21\\ K/L=5.1. \end{array}$
144.0 2	6.7 10	273.51	(1 ⁻ ,2 ⁻)	129.49 (1	-,2-)	M1	2.56	24 4	$\begin{aligned} &\alpha(\text{K})\exp=2.1\\ &\text{ce}(\text{K})/(\gamma+\text{ce})=0.591\ 5;\\ &\text{ce}(\text{L})/(\gamma+\text{ce})=0.0988\ 17;\\ &\text{ce}(\text{M})/(\gamma+\text{ce})=0.0229\ 4\\ &\text{ce}(\text{N})/(\gamma+\text{ce})=0.00571\ 11;\\ &\text{ce}(\text{O})/(\gamma+\text{ce})=0.001050\ 19;\\ &\text{ce}(\text{P})/(\gamma+\text{ce})=7.09\times10^{-5}\ 13\\ &\alpha(\text{K})=2.10\ 3;\ \alpha(\text{L})=0.352\ 6;\\ &\alpha(\text{M})=0.0816\ 12\\ &\alpha(\text{N})=0.0203\ 3;\ \alpha(\text{O})=0.00374\\ &6;\ \alpha(\text{P})=0.000253\ 4\end{aligned}$
173.1 2	6.6 <i>4</i>	482.01	(0 ⁺ ,1 ⁺ ,2 ⁺)	308.97 (≤	3)(-)	E1	0.1035	7.3 5	$\alpha(K) \exp < 0.15$ $ce(K)/(\gamma+ce)=0.0766 11;$ $ce(L)/(\gamma+ce)=0.01324 19;$ $ce(M)/(\gamma+ce)=0.00307 5$ $ce(N)/(\gamma+ce)=0.000756 11;$ $ce(O)/(\gamma+ce)=0.0001329 20;$ $ce(P)/(\gamma+ce)=6.81\times10^{-6} 10$ $\alpha(K)=0.0845 12; \alpha(L)=0.01461$ $21; \alpha(M)=0.00339 5$ $\alpha(N)=0.000834 12;$ $\alpha(O)=0.0001466 21;$ $\alpha(P)=7.51\times10^{-6} 11$ $K_{II} > 5.3$
179.5 2	3.1 2	308.97	(≤3) ^(−)	129.49 (1	-,2-)	M1+E2	0.96 42	7.4 5	$\begin{aligned} &\alpha(K) \exp = 0.75 \\ &\alpha(K) \exp = 0.75 \\ &ce(K) / (\gamma + ce) = 0.34 \ 16; \\ &ce(L) / (\gamma + ce) = 0.0272 \ 75 \\ &ce(M) / (\gamma + ce) = 0.0067 \ 19; \\ &ce(O) / (\gamma + ce) = 0.0067 \ 19; \\ &ce(O) / (\gamma + ce) = 0.0012 \ 3; \\ &ce(P) / (\gamma + ce) = 4.0 \times 10^{-5} \ 30 \\ &\alpha(K) = 0.68 \ 46; \ \alpha(L) = 0.22 \ 3; \\ &\alpha(M) = 0.053 \ 10 \\ &\alpha(N) = 0.0132 \ 23; \ \alpha(O) = 0.0023 \\ &\beta; \ \alpha(P) = 7.9 \times 10^{-5} \ 57 \end{aligned}$
180.3 3	0.7 2	543.00	(1+)	362.69 (1-	+)	[M1]	1.358	1.6 4	α: for δ (E2/M1)=1.0. ce(K)/(γ+ce)=0.473 5; ce(L)/(γ+ce)=0.0789 13; ce(M)/(γ+ce)=0.0183 3 ce(N)/(γ+ce)=0.00456 8; ce(O)/(γ+ce)=0.000838 15; ce(P)/(γ+ce)=5.66×10 ⁻⁵ 10 α(K)=1.116 17; α(L)=0.186 3; α(M)=0.0431 7

 $^{182}_{79}\mathrm{Au}_{103}\text{--}5$

				182 Hg ε	decay (10.83	3 s) 20	011b02 (con	tinued)				
	γ ⁽¹⁸² Au) (continued)											
Eγ	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult. [†]	α^{\ddagger}	$I_{(\gamma+ce)}^{\#}$	Comments			
182.0 2	6.7 5	308.97	(≤3) ^(−)	127.00	(1 ⁺ ,2 ⁺)	E1	0.0912	7.3 6	$\begin{aligned} &\alpha(\mathrm{N}) = 0.01075 \ 16; \ \alpha(\mathrm{O}) = 0.00198 \\ &\beta; \ \alpha(\mathrm{P}) = 0.0001335 \ 20 \\ &\mathrm{ce}(\mathrm{K})/(\gamma + \mathrm{ce}) = 0.0683 \ 9; \\ &\mathrm{ce}(\mathrm{L})/(\gamma + \mathrm{ce}) = 0.01175 \ 17; \\ &\mathrm{ce}(\mathrm{M})/(\gamma + \mathrm{ce}) = 0.00072 \ 4 \\ &\mathrm{ce}(\mathrm{N})/(\gamma + \mathrm{ce}) = 0.000670 \ 10; \\ &\mathrm{ce}(\mathrm{O})/(\gamma + \mathrm{ce}) = 0.0001180 \ 17; \\ &\mathrm{ce}(\mathrm{O})/(\gamma + \mathrm{ce}) = 6.12 \times 10^{-6} \ 9 \\ &\alpha(\mathrm{K}) = 0.0746 \ 11; \ \alpha(\mathrm{L}) = 0.01282 \\ &19; \ \alpha(\mathrm{M}) = 0.00297 \ 5 \\ &\alpha(\mathrm{N}) = 0.000732 \ 11; \\ &\alpha(\mathrm{O}) = 0.0001288 \ 19; \\ &\alpha(\mathrm{P}) = 6.68 \times 10^{-6} \ 10 \end{aligned}$			
195.9 2	4.5 5	325.40	(0^-,1^-,2^-)	129.49	(1 ⁻ ,2 ⁻)		≈6.0	≈30	α (K)exp: \approx 0.1, K/L>6.4. α (K)exp=4.5 Mult.: E0+M1 or abnormal M1; K/I = 4.8			
203.7 1	1.0 2	543.00	(1*)	339.30	(1+)	(M1)	0.965	2.0 4	$\alpha(K) \exp = 1.6; \ \alpha(L1) \exp = 0.3$ $ce(K)/(\gamma + ce) = 0.404 \ 4;$ $ce(L)/(\gamma + ce) = 0.0671 \ 10;$ $ce(M)/(\gamma + ce) = 0.01557 \ 24$ $ce(N)/(\gamma + ce) = 0.00388 \ 6;$ $ce(O)/(\gamma + ce) = 0.000714 \ 12;$ $ce(P)/(\gamma + ce) = 4.82 \times 10^{-5} \ 8$ $\alpha(K) = 0.794 \ 12; \ \alpha(L) = 0.1320 \ 19;$ $\alpha(M) = 0.0306 \ 5$ $\alpha(N) = 0.00762 \ 11; \ \alpha(O) = 0.001402$ $20; \ \alpha(P) = 9.48 \times 10^{-5} \ 14$ K/I = 4.5			
212.3 2	5.7 5	339.30	(1 ⁺)	127.00	(1+,2+)	M1	0.860	10.8 <i>10</i>	α(K)exp=0.8; α(L1)exp=0.16 ce(K)/(γ+ce)=0.380 4; ce(L)/(γ+ce)=0.0632 10; ce(M)/(γ+ce)=0.01465 23 ce(N)/(γ+ce)=0.00365 6; ce(O)/(γ+ce)=0.000671 11; ce(P)/(γ+ce)=4.54×10 ⁻⁵ 8 α(K)=0.707 10; α(L)=0.1175 17; α(M)=0.0273 4 α(N)=0.00679 10; α(O)=0.001249 18; α(P)=8.44×10 ⁻⁵ 12 s(L)=0.16			
217.6 1	62 5	543.00	(1+)	325.40	(0 ⁻ ,1 ⁻ ,2 ⁻)	E1	0.0585	66 <i>6</i>	a(L)=0.16. α (K)exp=0.03 ce(K)/(γ +ce)=0.0453 6; ce(L)/(γ +ce)=0.00763 11; ce(M)/(γ +ce)=0.001767 25 ce(N)/(γ +ce)=0.000436 7; ce(O)/(γ +ce)=7.72×10 ⁻⁵ 11; ce(P)/(γ +ce)=4.15×10 ⁻⁶ 6 α (K)=0.0480 7; α (L)=0.00808 12; α (M)=0.00187 3 α (N)=0.000461 7; α (O)=8.17×10 ⁻⁵ 12; α (D)=4.40×10 ⁻⁶ 7			
233.2 3	7.9 3	362.69	(1+)	129.49	(1 ⁻ ,2 ⁻)	(E1)	0.0493	8.3 <i>3</i>	$\alpha(K) = 0.1$ $\alpha(K) = 0.1$ $ce(K)/(\gamma + ce) = 0.0386 6;$ $ce(L)/(\gamma + ce) = 0.00645 10;$			

 $^{182}_{79}\mathrm{Au}_{103}\text{-}6$

				¹⁸² H	Ig ε decay	y (10.83 s)	2001I b	002 (contin	ued)
						$\gamma(^{182}\text{Au})$	continued)	
Eγ	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [†]	α^{\ddagger}	$I_{(\gamma+ce)}$ #	Comments
									$\begin{array}{c} ce(M)/(\gamma+ce)=0.001494\ 22\\ ce(N)/(\gamma+ce)=0.000368\ 6;\\ ce(O)/(\gamma+ce)=6.54\times10^{-5}\ 10;\\ ce(P)/(\gamma+ce)=3.57\times10^{-6}\ 6\\ \alpha(K)=0.0405\ 6;\ \alpha(L)=0.00677\ 10;\\ \alpha(M)=0.001568\ 23\\ \alpha(N)=0.000387\ 6;\ \alpha(O)=6.86\times10^{-5}\\ 10;\ \alpha(P)=3.75\times10^{-6}\ 6\\ \end{array}$
235.7 1	11.8 5	362.69	(1*)	127.00	(1 ⁺ ,2 ⁺)	M1	0.644	19.7 10	$\alpha(K)\exp=0.58$ $ce(K)/(\gamma+ce)=0.322 4;$ $ce(L)/(\gamma+ce)=0.0534 8;$ $ce(M)/(\gamma+ce)=0.01238 19$ $ce(N)/(\gamma+ce)=0.00309 5;$ $ce(O)/(\gamma+ce)=0.000568 9;$ $ce(P)/(\gamma+ce)=3.84\times10^{-5} 6$ $\alpha(K)=0.529 8; \alpha(L)=0.0878 13;$ $\alpha(M)=0.0204 3$ $\alpha(N)=0.00507 8; \alpha(O)=0.000933 14;$ $\alpha(P)=6.31\times10^{-5} 9$
240.4 3	1.3 2	339.30	(1 ⁺)	98.97	(1 ⁺)	[M1]	0.610	2.0 3	ce(K)/(γ +ce)=0.312 4; ce(L)/(γ +ce)=0.0516 8; ce(M)/(γ +ce)=0.01197 19 ce(N)/(γ +ce)=0.00298 5; ce(O)/(γ +ce)=0.000549 9; ce(P)/(γ +ce)=3.71×10 ⁻⁵ 6 α (K)=0.501 8; α (L)=0.0831 12; α (M)=0.0193 3 α (N)=0.00480 7; α (O)=0.000883 13; α (P)=5.97×10 ⁻⁵ 9
248.0 2	6.1 2	273.51	(1 ⁻ ,2 ⁻)	25.60	(≤3) ⁽⁺⁾	(E1)	0.0425	6.4 2	$\begin{aligned} &\alpha(M1)\exp=5.8\times10^{-3}\\ &ce(K)/(\gamma+ce)=0.0335\ 5;\\ &ce(L)/(\gamma+ce)=0.00556\ 8;\\ &ce(M)/(\gamma+ce)=0.001287\ 19\\ &ce(N)/(\gamma+ce)=0.000317\ 5;\\ &ce(O)/(\gamma+ce)=5.65\times10^{-5}\ 8;\\ &ce(P)/(\gamma+ce)=3.12\times10^{-6}\ 5\\ &\alpha(K)=0.0349\ 5;\ \alpha(L)=0.00580\ 9;\\ &\alpha(M)=0.001342\ 19\\ &\alpha(N)=0.000331\ 5;\ \alpha(O)=5.88\times10^{-5}\\ &9;\ \alpha(P)=3.25\times10^{-6}\ 5\\ &K/L>2.2.\end{aligned}$
269.5 1	8.2 3	543.00	(1*)	273.51	(1 ⁻ ,2 ⁻)	E1	0.0347	8.5 <i>3</i>	$\begin{aligned} \alpha(L1)\exp<0.017 \\ ce(K)/(\gamma+ce)=0.0276 \ 4; \\ ce(L)/(\gamma+ce)=0.00455 \ 7; \\ ce(M)/(\gamma+ce)=0.001053 \ 15 \\ ce(N)/(\gamma+ce)=0.000260 \ 4; \\ ce(O)/(\gamma+ce)=4.63\times10^{-5} \ 7; \\ ce(P)/(\gamma+ce)=2.60\times10^{-6} \ 4 \\ \alpha(K)=0.0286 \ 4; \ \alpha(L)=0.00471 \ 7; \\ \alpha(M)=0.001089 \ 16 \\ \alpha(N)=0.000269 \ 4; \ \alpha(O)=4.79\times10^{-5} \\ 7; \ \alpha(P)=2.69\times10^{-6} \ 4 \\ K/L=6.6 \approx \end{aligned}$
273.5 1	15.7 3	273.51	(1 ⁻ ,2 ⁻)	0.0	(2 ⁺)	E1	0.0335	16.2 <i>3</i>	$\alpha(L1)\exp<1.6\times10^{-2}$

 $^{182}_{79}\mathrm{Au}_{103}\text{--}7$

				1	¹⁸² Hg ε decay (10.83 s) 2001			Ib02 (continued)			
						$\gamma(^{182}\mathrm{Au})$ ((continued)				
Eγ	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult. [†]	α^{\ddagger}	$I_{(\gamma+ce)}^{\#}$	Comments		
339.3.2	8.6.2	339.30	(1+)	0.0	(2+)	Ml	0.238	10.7 3	ce(K)/(γ +ce)=0.0267 4; ce(L)/(γ +ce)=0.00440 7; ce(M)/(γ +ce)=0.001016 15 ce(N)/(γ +ce)=0.000251 4; ce(O)/(γ +ce)=4.47×10 ⁻⁵ 7; ce(P)/(γ +ce)=2.52×10 ⁻⁶ 4 α (K)=0.0276 4; α (L)=0.00454 7; α (M)=0.001050 15 α (N)=0.000259 4; α (O)=4.62×10 ⁻⁵ 7; α (P)=2.60×10 ⁻⁶ 4 K/L≥6. α (K)exp=0.12		
									ce(K)/(γ +ce)=0.1582 <i>19</i> ; ce(L)/(γ +ce)=0.0260 <i>4</i> ; ce(M)/(γ +ce)=0.00603 <i>9</i> ce(N)/(γ +ce)=0.001502 <i>22</i> ; ce(O)/(γ +ce)=0.000276 <i>4</i> ; ce(P)/(γ +ce)=1.87×10 ⁻⁵ <i>3</i> α (K)=0.196 <i>3</i> ; α (L)=0.0322 <i>5</i> ; α (M)=0.00746 <i>11</i> α (N)=0.00186 <i>3</i> ; α (O)=0.000342 <i>5</i> ; α (P)=2.32×10 ⁻⁵ <i>4</i> K/L=6.1.		
362.7 3	8.5 2	362.69	(1 ⁺)	0.0	(2 ⁺)	M1	0.199	10.2 2	α (K)exp=0.17 ce(K)/(γ +ce)=0.1365 <i>17</i> ; ce(L)/(γ +ce)=0.0224 <i>4</i> ; ce(M)/(γ +ce)=0.00519 <i>8</i> ce(N)/(γ +ce)=0.001293 <i>19</i> ; ce(O)/(γ +ce)=0.000238 <i>4</i> ; ce(P)/(γ +ce)=1.615×10 ⁻⁵ <i>24</i> α (K)=0.1637 <i>24</i> ; α (L)=0.0269 <i>4</i> ; α (M)=0.00622 <i>9</i> α (N)=0.001550 <i>22</i> ; α (O)=0.000285 $4 = (0) - 1.04 \times 10^{-5} 2$		
413.5 1	52 5	543.00	(1+)	129.49	(1 ⁻ ,2 ⁻)	E1	0.01293	53 5	4; $\alpha(P)=1.94\times10^{-5} 3$ $\alpha(K)\exp=0.016$ $ce(K)/(\gamma+ce)=0.01059 15;$ $ce(L)/(\gamma+ce)=0.001677 24;$ $ce(M)/(\gamma+ce)=0.000386 6$ $ce(N)/(\gamma+ce)=9.55\times10^{-5} 14;$ $ce(O)/(\gamma+ce)=1.721\times10^{-5} 25;$ $ce(P)/(\gamma+ce)=1.037\times10^{-6} 15$ $\alpha(K)=0.01073 15; \alpha(L)=0.001698 24;$ $\alpha(M)=0.000391 6$ $\alpha(N)=9.68\times10^{-5} 14;$ $\alpha(O)=1.743\times10^{-5} 25;$ $\alpha(P)=1.050\times10^{-6} 15$		
442.3 2	7.1 2	543.00	(1+)	100.71	(0+,1+,2+)	M1	0.1169	8.0 3	$\begin{aligned} &\alpha(\text{K})\exp=0.11\\ &\text{ce}(\text{K})/(\gamma+\text{ce})=0.0863 \ 12;\\ &\text{ce}(\text{L})/(\gamma+\text{ce})=0.01410 \ 20;\\ &\text{ce}(\text{M})/(\gamma+\text{ce})=0.00326 \ 5\\ &\text{ce}(\text{N})/(\gamma+\text{ce})=0.000813 \ 12;\\ &\text{ce}(\text{O})/(\gamma+\text{ce})=0.0001496 \ 22;\\ &\text{ce}(\text{P})/(\gamma+\text{ce})=1.017\times10^{-5} \ 15\\ &\alpha(\text{K})=0.0964 \ 14; \ \alpha(\text{L})=0.01575 \ 23;\\ &\alpha(\text{M})=0.00364 \ 6\end{aligned}$		

¹⁸²Hg ε decay (10.83 s) 2001Ib02 (continued) $\gamma(^{182}\text{Au})$ (continued) $I_{(\gamma+ce)}^{\#}$ α^{\ddagger} Mult.[†] $I_{\gamma}^{\#}$ \mathbf{J}_i^{π} Eγ E_i(level) \mathbf{E}_{f} \mathbf{J}_{f}^{π} Comments $\alpha(N)=0.000908 \ 13; \ \alpha(O)=0.0001671 \ 24;$ $\alpha(P)=1.136\times 10^{-5}$ 16 480.0 3 9.9 5 543.00 $62.90 (1^+, 2^+)$ 0.0942 10.9 6 $\alpha(K) \exp = 0.095$ (1^{+}) M1 $ce(K)/(\gamma+ce)=0.0710 \ 10;$ $ce(L)/(\gamma+ce)=0.01157$ 17; $ce(M)/(\gamma+ce)=0.00268 4$ $ce(N)/(\gamma+ce)=0.000667 \ 10;$ $ce(O)/(\gamma+ce)=0.0001227$ 18; $ce(P)/(\gamma+ce)=8.35\times10^{-6}$ 12 *α*(K)=0.0777 *11*; *α*(L)=0.01266 *18*; $\alpha(M) = 0.00293 5$ *α*(N)=0.000729 *11*; *α*(O)=0.0001343 *19*; $\alpha(P) = 9.14 \times 10^{-6}$ 13 543.0 2 543.00 (1^{+}) $0.0 \quad (2^+)$ M1 0.0681 10.9 7 $\alpha(K) \exp = 0.055$ 6.4 4 $ce(K)/(\gamma+ce)=0.0526$ 7; $ce(L)/(\gamma+ce)=0.00854$ 12; $ce(M)/(\gamma+ce)=0.00198 3$ $ce(N)/(\gamma+ce)=0.000492$ 7; $ce(O)/(\gamma+ce)=9.06\times10^{-5}$ 13; $ce(P)/(\gamma+ce)=6.17\times10^{-6}$ 9 $\alpha(K)=0.0562 \ 8; \ \alpha(L)=0.00912 \ 13;$ $\alpha(M) = 0.00211 \ 3$ $\alpha(N)=0.000525 8; \alpha(O)=9.67\times 10^{-5} 14;$ $\alpha(P)=6.59\times10^{-6}$ 10

[†] From ce data (2001Ib02).

[‡] From BrIcc v2.3b (16-Dec-2014) 2008Ki07, "Frozen Orbitals" appr.

[#] For absolute intensity per 100 decays, multiply by 0.30 3.

¹⁸²Hg ε decay (10.83 s) 2001Ib02

