					History			
		r	Туре А		Citation	Literature Cutoff Date		
		Full F	Full Evaluation		NDS 106.367 (2005)	31-Aug-2005		
		1 411 1		. c. ma	1120 100,007 (2000)	51 1146 2005		
$O(\beta^{-}) = -188 5;$	S(n) = 75	576.8 <i>14</i> ; S(p)=	5948.8 <i>23</i> ; O($(\alpha) = 1519.$	3 23 2012Wa38			
Note: Current ev	valuation	n has used the f	ollowing O re	ecord \$ -	188 5 7576.8 <i>13</i> 5942	.2 21 1522.5 22 2003Au03.		
Other Reactions 180 Hf(p $_{22}$): 1987	: 7Ra23		6					
$181_{Ta(e,e)}$ $181_{Ta(e,e)}$	(e e') 18	$1_{Ta(e,e'x)} \cdot 1001$	Ta23 1987D	703 1985	Ni07 1985Ni02 1985Dz	06 1984527 19830c01 1983Dz03		
$1982T_{s}01$ 1	982Dz0	1 1980 Ra 14 1	980Dz02 197	205, 1905 79Dz05 1	978Ra02 1977Mi12 197	77Hi02 1977Br37 1976Dz04 1974Wh05		
1971Mo06.	1970Gr	18.	, i),	<i>JD</i> 205, 1	, , , , , , , , , , , , , , , , , , ,	,11102, 1977 1970 1970 1970 1977 101103,		
181 Ta(μ^-, e^-): 20)02Ko55	5.						
¹⁸¹ Ta(pol p,p):	1981Ro	03, 1978Fr12, 1	971Gr06.					
¹⁸¹ Ta(pol ⁷ Li, ⁷ L	.i): 198 1	IMo05.						
¹⁸¹ Ta elastic sca	ttering,	inelastic scatter	ing: 2002Pa2	4, 2001Ev	02, 1998Ev05, 1995Zh46	5, 1995An36, 1991Sh08, 1988Ka17,		
1987Za06, 1 1981Ko26, 1 1976We19, 1971Ro26, 1 181Ta(¹⁹ C,n ¹⁸ C)	.986Ti0: 1980Ho2 1976Mi2 1970Ro(, ¹⁸¹ Ta(²	5, 1986Su08, 19 23, 1980Da08, 20, 1976Fe06, 1 05, 1970Ho18, 0 Ne, α^{16} O): 199	986Ha31, 198 1980Bu16, 19 1976Da21, 19 1970Ar02, 19 198Ba45, 19850	5Ha02, 19 79Yu02, 1 75Ma07, 1 68Ko18, 1 Gu08.	83Si15, 1983Ra02, 1983 979GI12, 1978Wo13, 19 1974Wh09, 1974Ro20, 19 968Ch32, 1968Ca17, 190	Ha33, 1983Ch16, 1982Mo27, 1981Mu07, 78Do05, 1978Al34, 1977Vi02, 1977Bi10, 974Be40, 1972Ri14, 1972Ra01, 1971Si34, 67Po03, 1966Du08, 1966As02.		
$^{182}W(\gamma,p)$: 1987	Da29.							
					101			
					¹⁸¹ Ta Levels			
				Cross	Reference (XREF) Flags	3		
						•		
		A 181 B 181 C 180 D 181	Hf β^- decay W ε decay Ta(n, γ) E=th Ta(γ, γ')	E 18 F 18 G C H 18	³¹ Ta IT decay (18.9 μ s) ³¹ Ta(γ , γ'):Mossbauer oulomb excitation ³¹ Ta(d,d'), (n,n'), (p,p')	I 176 Yb $({}^{11}$ B, $\alpha 2n\gamma)$ J 181 Ta $({}^{238}$ U, 238 U' $\gamma)$		
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF			Comments		
0.0°	$7/2^{+}$	stable	ABCDE GHT	u = +2	$3705 7 \Omega = +3 17 2 (200)$	1 St77)		
0.0	1/2	stuble	ADCDL GIII	$\mu = 12$ μ : me	asured by NMR $(1973Er$	17).		
				Q: by hyp stru kao (193) 3.18 hyp J ^{π} : frc diag <r ² > ¹ for	hyperfine structure of pionic tructure of pionic x rays (1981Ba07); 3 81Ka10); +3.30 6 by hyperfine structure of muonic erfine structure of muonic structure of muonic structure of muonic structure of muonic propical spectroscopy, p gram. l^2 =5.351 fm 3 for ¹⁸¹ Ta 1 all nuclides (2004An14).	bonic x rays (1983Ol03) Others: +3.28 6 by c x rays (1981Ko11); +3.35 2 by hyperfine 981Ba07); +3.35 11 by hyperfine structure of .4 2 by atomic beam magnetic resonance berfine structure of pionic x rays (1978Be31); e of muonic x rays (1977Po02); 3.44 6 by c x rays (1976Mc03); parity from analysis of μ with Schmidt based on a global fit to charge radius data		
6.237 ^a 20	9/2-	6.05 µs 12	ABC HIS	$\mu = +5$	28 9; Q=+3.71 7 (2001S	stZZ)		
				μ: me effe	asured by Mossbauer effe ct (1978We18).	ect (19/0Ka16) Other: +5.3 2 by Mossbauer		
				Q: me	asured by Mossbauer effe	ect (1983Ei02).		
				J^{π} : from	om optical spectroscopy a	and NMR, parity from E1 to $7/2^+$.		
1				$T_{1/2}$:	trom ¹⁰¹ W ε decay.			
136.262 ^a 13	9/2+	39.5 ps 16	ABCDEFGHI	$\mu = +2.$	6 7 (2001StZZ)			

¹⁸¹Ta Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
				 μ: measured by integral perturbed angular correlation (1983Ak02). J^π: M1+E2 to 7/2⁺, Coulomb excitation, perturbed angular correlations, rotational band member. T_{1/2}: weighted average of 38 ps 2 from Mossbauer and 42.0 ps 25 from Coulomb excitation.
158.554 ^{&} 24 301.622 ^c 22	11/2 ⁻ 11/2 ⁺	16 ps 3	BC HIJ C GHI	J ^π : M1+E2 to 9/2 ⁻ , member of 9/2[514] rotational band. J ^π : M1+E2 to 9/2 ⁺ , E2 to 7/2 ⁺ , Coulomb excitation, member of 7/2[404] rotational band.
337.54 ^a 3	$13/2^{-}$		C HIJ	$J_{1/2}^{\pi}$: γ 's to $9/2^{-}$ and $11/2^{-}$, member of $9/2[514]$ rotational band.
482.168 ^{<i>f</i>} 23	5/2+	10.8 ns 1	A C E GHI	 μ=+3.29 3; Q=(+)2.35 6 (2001StZZ) μ: measured by differential perturbed angular correlation (1964Ag02,1963Ma10). C) measured by differential perturbed angular correlation (1092Pu22)
				J ^{π} : M1+E2 to 7/2 ⁺ , M2+E3 to 9/2 ⁻ , E2 to 9/2 ⁺ . Band head of 5/2[402] band. T _{1/2} : from ¹⁸¹ Hf β^- decay.
495.184 ^{<i>d</i>} 22	13/2+	6.3 ps 8	C GHI	J^{π} : M1+E2 γ to 11/2 ⁺ , E2 γ to 9/2 ⁺ , band structure.
542 51 & 2	15/2-		с ті	$T_{1/2}$: from Coulomb excitation (19/61n0/).
$590.06^{g} 23$	$7/2^+$		GI	J^{π} : γ to $5/2^+$, band structure.
615.19 <i>3</i>	1/2+	18 µs 1	АСЕН	J^{π} : M3 to 7/2 ⁺ , E2 to 5/2 ⁺ , β -feeding from ¹⁸¹ Hf ($J^{\pi}=1/2^{-}$) with
				$T_{1/2}$: 17.6 Ms 2 from ¹⁸¹ Hf β^- decay 18.9 Ms 5 and ¹⁸¹ Ta IT decay. The uncertainty has been increased by the evaluator to account for the wide variability in the measurements.
618.99 5	3/2+	0.87 ns 2	AC H	J ^{π} : M1 to 5/2 ⁺ , (E2) to 7/2 ⁺ , γ to 1/2 ⁺ , β decay from 1/2 ⁻ with log <i>ft</i> =8.3.
716 659 ^C 25	15/2+	3.0 ns 4	с снт	$T_{1/2}$: from ¹⁸¹ Hf β^- decay. $\mu = +2, 2, (2001St77)$
/10.05/ 25	15/2	5.0 ps +	C UII	$\mu = 12.2$ (2001)(22) μ : measured by transient field integral perturbed angular correlation (1996HaZX).
				S ¹ : M1+E2 to $15/2^{\circ}$, E2 to $11/2^{\circ}$, fed by primary γ in (n,γ) , Rotational band assignment.
777 31 f 23	$0/2^{+}$		СТ	$T_{1/2}$: from Coulomb excitation (19/6In0/).
$727.31^{\circ} 23$ 772.97 ^{<i>a</i>} 4	$\frac{9/2}{17/2^{-}}$		C IJ	J^{π} : γ 's to $13/2^{-}$ and $15/2^{-}$, fed by primary γ in (n,γ) , band structure.
892.9 <mark>8</mark> <i>3</i>	$11/2^{+}$		I	J^{π} : γ to $7/2^+$ and $9/2^+$, band structure.
964.99 ^d 4	17/2+	1.93 ps 24	CGI	 μ=+4 2 (2001StZZ) μ: measured by transient field integral perturbed angular correlation (1996HaZX).
				J^{π} : M1+E2 to 15/2 ⁺ , E2 to 13/2 ⁺ , fed by primary γ in (n, γ), Rotational band assignment.
99373			т	$T_{1/2}$: from Coulomb excitation (1976In07).
994.2 ^{h} 10	$(5/2^{-})$		I	J^{π} : γ to 9/2 ⁻ , band head of $\pi 1/2[541]$.
1022.6 ^h 10	(9/2 ⁻)		I	J^{π} : γ to $11/2^{-}$, band structure.
1027.94 <mark>&</mark> 5	19/2-		C IJ	J ^{π} : γ 's to 17/2 ⁻ and 15/2 ⁻ , rotational band assignment.
1085.6 ^{<i>f</i>} 3 1156.6 5	13/2+		I T	J^{π} : γ to $9/2^+$ and $11/2^+$, band structure.
1163.6 ^h 15	$(13/2^{-})$		- I	J^{π} : γ to $(9/2^{-})$, band structure.
1205.7 ^b 6 1233.1	(3/2+)		G C H	J^{π} : γ to 7/2 ⁺ and 5/2 ⁺ , K-2 γ -vibrational band with K=3/2.

Continued on next page (footnotes at end of table)

¹⁸¹Ta Levels (continued)

E(level) [†]	J ^π ‡	T _{1/2}	XF	REF	Comments
1239.47 ^c 5	19/2+	1.12 ps <i>14</i>	С	GΙ	μ =+4 5 (2001StZZ) μ : measured by transient field integral perturbed angular correlation (1996HaZX). I^{π} : E2 to 15/2 ⁺ χ to 17/2 ⁺ fed by primary χ in (n χ) rotational band
					assignment. $T_{1/2}$; from Coulomb excitation (1976In07)
1278.1 ^b 6	$(5/2^+)$			G	J^{π} : γ to 7/2 ⁺ and 9/2 ⁺ , band structure.
1304.8 ^g 4	15/2+			I	J^{π} : γ to $11/2^+$ and $13/2^+$, rotational band structure.
1307.11 ^{<i>a</i>} 5 1340 <i>15</i>	21/2-		C	IJ H	J^{π} : γ 's to 17/2 ⁻ and 19/2 ⁻ , rotational band assignment.
1380.1 ^b 5	$(7/2^+)$			G	J^{π} : γ to $7/2^+$ and $11/2^+$, band structure.
1380.6° 6 1390	$(11/2^+)$			G H	J^{μ} : γ to $1/2^+$ and $11/2^+$, K+2 γ -vibrational band with K=11/2.
1403.2 [@] 6	15/2-		С	I	XREF: C(1403). E(laya): Layal absorved in 1008Sa60, deevaites by amitting 861, 1066
					E(level): Level observed in 1998Sado, deexcles by eintring sol, 1000 and 1244 keV γ 's to the 9/2 ⁻ band, is identified (by the evaluator) as a different state from the levels at 1403 and 1404 keV by 1998Dr09 However, there might be some chance that this level is actually the doublet of 1403.3+1403.9 from 1998Dr09. In this case, one might attribute the level 1403.4+x as the 1472.9 state from 1998Dr09 with x = 69.0
1403.35 22	(17/2)		С	I	XREF: C(1403). E(level): The level at 1403.9 keV deexcites by emitting γ 's of similar energies but very different branching ratios compared with this state; hence identified as two levels by 1998Dr09. There is a state at 1403.4 observed by 1998Sa60. It is not clear which state it corresponds to, but identified as the state at 1403.90 (15/2) in this evaluation.
1403.90 22	(15/2)		с	I	T _{1/2} : 3.3 ns for 1403.4 or 1403.9 from ¹⁷⁶ Yb(¹¹ B, α 2n γ) (1998Dr09). XREF: C(1403).
la de					See comments on 1403.3 level.
1419.6" 18	$(17/2^{-})$		C	I	J^{π} : γ to $(13/2^{-})$, band structure.
1472.7 1483.43 21	$21/2^{-}$	25 µs 2	C	IJ	J^{π} : γ to $17/2^{-}$ and $21/2^{-}$.
	,	,			Configuration: $\pi 9/2[514]\pi 7/2[404]\pi 5/2[402]$, $K^{\pi}=21/2^{-}$. T _{1/2} : From (²³⁸ U, ²³⁸ U' γ). Other:23 μ s +6–2 from ¹⁷⁶ Yb(¹¹ B, α 2n γ) (1998Dr09).
1507.9 ^b 7	$(9/2^+)$			G	J^{π} : γ to $9/2^+$ and $11/2^+$, band structure.
1539.31 ^d 9	21/2+	0.76 ps 10	С	GΙ	J^{π} : γ to $19/2^+$ and to $17/2^+$, rotational band structure. T _{1/2} : from Coulomb excitation (1976In07).
1548.4 ^{<i>J</i>} 4 1563.4 ^{<i>e</i>} 7	$17/2^+$ (13/2 ⁺)			I G	J^{π} : γ to $13/2^+$ and to $15/2^+$, rotational band structure. J^{π} : γ to $9/2^+$ and $11/2^+$, band structure.
1583.8 [@] 10 1591.9 4	(17/2) (19/2)			I I	J^{π} : γ to (17/2).
1608.85 ^{&} 20	23/2-		c	IJ	J^{π} : γ to $19/2^{-}$ and $21/2^{-}$, band structure.
1664.9 ^b 7	$(11/2^+)$		-	G	J^{π} : γ to $11/2^+$ and $13/2^+$, band structure.
1685.3 5	(19/2)			I	J^{π} : γ to (17/2).
1771.9°7 1776 3 0	$(15/2^{+})$ 23/2 ⁻			G 1	J^{*} : γ to $11/2^{+}$ and $13/2^{+}$, band structure. $I^{\pi_{1}} \propto to 21/2^{-}$
1786.6^{h} 20	$(21/2^{-})$			T	J^{π} : γ to $(17/2^{-})$, band structure.
1787.6 [@] 10	(19/2)			ī	- ,
1803.7 5	(21/2)			I	J^{π} : γ to (19/2).

Continued on next page (footnotes at end of table)

¹⁸¹Ta Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
1819.1 <mark>8</mark> 4	$(19/2^+)$		I	J^{π} : γ to $15/2^+$ and $17/2^+$, band structure.
1863.09 ^c 22	$23/2^{+}$		I	J^{π} : γ to $19/2^+$ and $21/2^+$, band structure.
1866.0 <i>10</i>			D	
1932.76 ^{<i>a</i>} 24	$25/2^{-}$		IJ	J^{π} : γ to $21/2^{-}$ and $23/2^{-}$, band structure.
1935.0 10	(17/0+)		D	I^{π} , $L = 12/2^{\pm}$ hand denote the
2001.2° 10	$(1/2^{-})$		G _	J [*] : γ to $13/2^{\circ}$, band structure.
2014.7 I = 12	(21/2)			
2020			Б	
2098.1 11	$25/2^{-}$		ັ່ງ	J^{π} : γ to 23/2 ⁻ .
2105.0 10	,		D	, ,
2122.5 ^f 5	$(21/2^+)$		I	J^{π} : γ to $17/2^+$ and $(19/2^+)$, band structure.
2210.1 ^{<i>d</i>} 3	$25/2^+$		I	J^{π} : γ to 21/2 ⁺ , band structure.
2227.9 9	- 1	210 µs 20	IJ	$T_{1/2}$: from ¹⁸¹ Ta(²³⁸ U, ²³⁸ U' γ) (1998Wh02).
2240.0 10		,	D	
2253.0 10			D	
2260.6 ^h 23	$(25/2^{-})$		I	J^{π} : γ to $(21/2^{-})$, band structure.
2262.6 [@] 13	(23/2)		I	
2272.0 10			D	
2276.3 ^{&} 8	27/2-		I	E(level): Ex=2287 from 1998Dr09, depopulated by 678.0 keV γ . J ^{π} : γ to 23/2 ⁻ and 25/2 ⁻ , band structure.
2289.0 10			D	
2297.1 7			D	
2361.4			C	
2400.1 7 2418 1 7			ם ח	
2448.1 7			D	
2519.0 10			D	
2525.7			С	
2533.7 [@] 15	(25/2)		I	
2570			Н	-
2580.1° 4	$27/2^+$		I	J^{π} : γ to 23/2 ⁺ , band structure.
2642.8" 11	29/2		T	J^{*} : γ to 25/2, band structure.
2800 0 10			D	
2807.0 10			D	
2812.0 10			D	
2835.0 10			D	
2845.0 10			D	
2890			н	
2892.0 10			ע	
2929.0 10			D	
2967.0 10			D	
2968.1 ^d 11	$29/2^{+}$		I	J^{π} : γ to 25/2 ⁺ , band structure.
3010		0.78 ps	D	T _{1/2} : calculated from Γ =5.9×10 ⁻⁴ eV and γ branching measured in (γ, γ') .
3016.0 10			D	
3021.3 ^{&} <i>13</i>	31/2-		I	J^{π} : γ to $27/2^{-}$, band structure.
3023.0 10			D	
3029.0 10			D	
3035.0 10			D	
3054.1 7			ע	

¹⁸¹Ta Levels (continued)

E(level) [†]	Jπ‡	T _{1/2}	XREF		Comments
3065.0 10			D		
3074.2 7			D		
3081.0 10			D		
3086.0 10			D		
3092.0 10			D		
3108.1 7			D		
3320.0 10			D		
3329.0 10			D		
3407.0 10			D		
6417.7 7		1.7 ps	D		T _{1/2} : calculated from Γ =2.7×10 ⁻⁴ eV and γ branching measured in (γ, γ') .
6759		25 ps	D		T _{1/2} : calculated from Γ =1.8×10 ⁻⁵ eV and γ branching measured in (γ, γ') .
1403.2+x [#]	$(19/2^+)$	140 ns <i>36</i>		I	Additional information 1.
					$T_{1/2}$: from ¹⁷⁶ Yb(¹¹ B, α 2ny) (1998Sa60).
					This level feeds 1402 level through, as yet, unidentified transitions of $x < 50$.
1617.2+x [#] 8	$(21/2^+)$			I	
1853.3+x [#] 7	$(23/2^+)$			I	
2113.0+x [#] 8	$(25/2^+)$			I	
2393.7+x [#] 10	$(27/2^+)$			I	

[†] From least-squares fit (by evaluator) to $E\gamma$'s.

[‡] Spin and parity assignments are based on assumed rotational band structure. Specific arguments are given to individual levels.

[#] Band(A): $K^{\pi} = (19/2^+), \pi 9/2[514]\nu(1/2[510]9/2[624])$. Rotational parameters: A=9.62, B=2.45, fit to levels J=(19/2^+) to (25/2^+).

[@] Band(B): $K^{\pi} = 15/2^{-}, \pi7/2[404]\nu(1/2[510]9/2[624])$. Rotational parameters: A=10.3, B=2.5, fit to levels J=(15/2) to (21/2).

& Band(C): 9/2[514], $\alpha = -1/2$ Rotational parameters: A=13.9, B=-3.54, fit to levels J= $11/2^{-1}$ to $23/2^{-1}$.

^{*a*} Band(c): 9/2[514], $\alpha = +1/2$ Rotational parameters: A=13.9, B=-3.52, fit to levels J=9/2⁻ to 21/2⁻.

^b K-2 gamma vibration band K=3/2 built on the ground state.

^c Band(D): 7/2[404], $\alpha = -1/2$. Rotational parameters: A=15.2, B=-4.9, fit to levels J=7/2⁺ to 19/2⁺.

^d Band(d): 7/2[404], $\alpha = +1/2$. Rotational parameters: A=15.2, B=-4.6, fit to levels J=9/2⁺ to 21/2⁺.

 e K+2 gamma vibration band K=11/2 built on the ground state.

^f Band(E): 5/2[402], $\alpha = +1/2$. Rotational parameters: A=15.5, B=-8.8, fit to levels J= $5/2^+$ to $17/2^+$.

^g Band(e): 5/2[402], $\alpha = -1/2$. Rotational parameters: A=15.4, B=-7.4, fit to levels J=7/2⁺ to (19/2⁺).

^{*h*} Band(F): band associate with a $\pi 1/2[541]$ configuration. Rotational parameters: A=9.9, B=-16.7, a=8.33, fit to levels J=(5/2⁻) to (21/2⁻).

						Adopted	Levels, Gammas	(continued)		
							$\gamma(^{181}\text{Ta})$			
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{a}	$I_{(\gamma+ce)}$	Comments
6.237	9/2-	6.240 20	100	0.0	7/2+	E1		70.5 25		$B(E1)(W.u.)=2.01\times10^{-6}$ 11
										Mult.: from ¹⁸¹ W ε decay.
136.262	9/2+	136.269 <i>13</i>	100	0.0	7/2+	M1+E2	+0.396 11	1.75 <i>I</i>		α: penetration parameter $\lambda = -9$ <i>I</i> . B(M1)(W.u.)=0.068 <i>4</i> ; B(E2)(W.u.)=260 <i>40</i> δ: weighted average of +0.41 <i>3</i> from β-decay and +0.394 <i>11</i> from Coulomb excitation.
158.554	11/2-	152.320 14	100	6.237	9/2-	M1+E2	0.5 2	1.23 8		δ: from ε-decay. Other: 0.17 2 from ¹⁷⁶ Yb(¹¹ B,α2nγ).
301.622	11/2+	165.40 2	100	136.262	9/2+	M1+E2	+0.363 10	1.01		B(M1)(W.u.)=0.093 <i>19</i> ; B(E2)(W.u.)=280 <i>90</i> Mult., δ : from Coulomb Excitation.
		301.57 21	68 ^{&} 5	0.0	7/2+	E2		0.0814		B(E2)(W.u.)=59 <i>12</i> Mult.: from Coulomb Excitation.
337.54	13/2-	179.00 2 331.29 <i>3</i>		158.554 6.237	11/2 ⁻ 9/2 ⁻					
482.168	$5/2^{+}$	345.97 4	18.78 12	136.262	9/2+	E2		0.0544		B(E2)(W.u.)=0.0264 3
		475.99 9	0.873 7	6.237	9/2-	M2+E3	0.5 1	0.168 8		B(M2)(W.u.)=0.0207 17; B(E3)(W.u.)=15 5
		482.17 3	100.00 14	0.0	7/2+	M1+E2	4.76 <i>4</i>	0.0295 8		B(M1)(W.u.)= $6.21 \times 10^{-7} I2$; B(E2)(W.u.)= $0.0256 J$ α : penetration parameter λ =150 L.
495.184	13/2+	193.72 5	65 &	301.622	11/2+	M1+E2	0.53 +12-9	0.61 3		B(M1)(W.u.)=0.118 21; B(E2)(W.u.)=370 150 Mult., δ : from Coulomb Excitation.
		358.881 20	100 ^{&} 8	136.262	9/2+	E2		0.0490		B(E2)(W.u.)=117 <i>17</i> Mult.: from Coulomb Excitation.
542.51	$15/2^{-}$	204.98 2		337.54	$13/2^{-}$					
		383.90 5		158.554	$11/2^{-}$					
590.06	$7/2^+$	107.9	100.0.11	482.168	5/2+	53		1.075		
615.19	1/2+	133.027 18	100.0 11	482.168	5/2+	E2		1.265		B(E2)(W.u.)=0.0055 4 α : penetration parameters $\lambda(1)=22$ 4, $\lambda(2)=-11$ 4 (1989Ki23)
		615.17 11	0.54 4	0.0	7/2+	M3(+E4)		0.194		B(M3)(W.u.)=0.13 <i>I</i> δ : 0.7 <i>3</i> from β^- decay doubtful because B(E4)(W.u.)=320. RUL requires B(E4)(W.u.) < 10 for A > 150
618.99	$3/2^{+}$	3.90 10		615.19	$1/2^{+}$	[M1]		2684	78 <i>37</i>	
	-,-	136.97 <i>6</i> 618.66 <i>8</i>	100 <i>21</i> 2.91 <i>14</i>	482.168 0.0	5/2 ⁺ 7/2 ⁺	M1 (E2)		1.83 0.01216		B(M1)(W.u.)=0.00075 <i>15</i> B(E2)(W.u.)=0.00042 <i>13</i>
716.659	15/2+	221.479 20	43 ^{&}	495.184	13/2+	M1+E2	0.49 +7-12	0.424 19		B(M1)(W.u.)=0.142 24; B(E2)(W.u.)=290 90 Mult., δ : from Coulomb Excitation.
		415.07 3	100 ^{&} 9	301.622	11/2+	E2		0.0328		B(E2)(W.u.)=153 24 Mult., δ : from Coulomb Excitation.

6

From ENSDF

					A	Adopted Lev	els, Gammas (co	ntinued)	
						$\gamma(^{18}$	¹ Ta) (continued)		
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	J_f^π	Mult. [‡]	δ^{\ddagger}	α^{a}	Comments
727.31	9/2+	137.1 245.0		590.06 482.168	7/2 ⁺ 5/2 ⁺				
772.97	17/2-	230.470 <i>20</i> 435.42 <i>3</i>		542.51 337.54	$15/2^{-}$ $13/2^{-}$				
892.9	11/2+	165.5 303.0		727.31 590.06	9/2 ⁺ 7/2 ⁺				
964.99	17/2+	248.41 4	31 &	716.659	15/2+	M1+E2	0.33 +14-10	0.327 17	B(M1)(W.u.)=0.15 3; B(E2)(W.u.)=110 90 Mult., δ : from Coulomb Excitation.
		469.77 <i>3</i>	100 ^{&} 13	495.184	13/2+	E2		0.02374	B(E2)(W.u.)=146 25 Mult.: from Coulomb Excitation.
993.7		511.5		482.168	$5/2^{+}$				
994.2	$(5/2^{-})$	988		6.237	9/2-				
1022.6	$(9/2^{-})$	864		158.554	$11/2^{-}$				
1027.94	19/2-	255.07 <i>5</i> 485.35 <i>5</i>		772.97 542.51	17/2 ⁻ 15/2 ⁻				
1085.6	13/2+	192.6 358.3		892.9 727.31	11/2 ⁺ 9/2 ⁺				
1156.6		162.9		993.7					
1163.6	$(13/2^{-})$	141		1022.6	$(9/2^{-})$	[E2]			
1205.7	$(3/2^+)$	616		590.06	7/2+				
		723		482.168	5/2+ 7/2+				
1020 47	10/2+	1200	208	0.0	1/2				$D(M1)(W_{22}) = 0.076(25) D(E2)(W_{22}) = 420, 140$
1239.47	19/2	274.31 9	100 20	904.99	17/2	[M1+E2]		0.01020	B(M1)(W.u.)=0.070 23; B(E2)(W.u.)=430 140
1050 1	(5/0+)	522.81 5	100 33	710.039	15/2	E2		0.01820	Mult.: from Coulomb Excitation.
1278.1	$(5/2^{+})$	688		590.06	$1/2^{+}$				
		1142		130.202	9/2 7/2+				
1304.8	$15/2^{+}$	219.2		1085.6	$13/2^+$				
1501.0	10/2	412.0		892.9	$11/2^+$				
1307.11	$21/2^{-}$	279.18 3		1027.94	$19/2^{-}$				
		534.09 7		772.97	$17/2^{-}$				
1380.1	$(7/2^+)$	651		727.31	9/2+				
		1078		301.622	$11/2^+$				
		1244		136.262	9/2+				
1290 6	(11/2+)	1382		0.0	1/2				
1380.0	$(11/2^{-})$	10/8		136 262	$\frac{11/2}{0/2^+}$				
		1244		0.0	7/2+				
1402.2	15/2-	861@		542.51	15/2-				
1403.2	15/2	001		J42.J1	13/2				

7

From ENSDF

 $^{181}_{73}\mathrm{Ta}_{108}$ -7

L

						Adopted 1	Levels, Gammas (continued)	
						2	ν ⁽¹⁸¹ Ta) (continued)	
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	E_f	J_f^{π}	Mult. [‡]	α^{a}		Comments
1403.2	15/2-	1066 [@]	337.54	13/2-				
		1244 [@]	158.554	$11/2^{-}$	Q		Mult.: from DCO ratios (1998Sa60).	
1403.35	(17/2)	860.7 <mark>b</mark>	542.51	$15/2^{-}$			E_{γ} : Observed in (n,γ) .	
		1065.7 [@]	337.54	$13/2^{-}$				
		1244.9 [@]	158.554	$11/2^{-}$				
1403.90	(15/2)	860.7 <mark>b</mark>	542.51	$15/2^{-}$			E_{γ} : Observed in (n,γ) .	
		1066.2 [@]	337.54	$13/2^{-}$				
		1245.5 [@]	158.554	$11/2^{-}$				
1419.6	$(17/2^{-})$	256	1163.6	$(13/2^{-})$	[E2]			
1472.7	01/0-	69.0	1403.90	(15/2)				
1483.43	$21/2^{-}$	177	1307.11	$21/2^{-}$				
		433.5	1027.94	19/2 $17/2^{-}$				
1507.9	$(9/2^+)$	1206	301.622	$11/2^+$				
		1372	136.262	9/2+				
1539.31	$21/2^+$	300.05 21	1239.47	19/2+				
		574.29 9	964.99	$17/2^{+}$	E2	0.01449	B(E2)(W.u.)=190 30	
1548 4	$17/2^{+}$	243 7	1304.8	$15/2^{+}$			Muit.: from Coulomb Excitation.	
15-0	11/2	462.6	1085.6	$13/2^+$				
1563.4	$(13/2^+)$	1262	301.622	$11/2^{+}$				
		1427	136.262	9/2+				
1583.8	(17/2)	181	1403.2	$15/2^{-}$				
1591.9	(19/2) 23/2 ⁻	188.5	1403.35	(1/2) $21/2^{-}$				
1008.85	23/2	581.3	1027.94	$\frac{21}{2}$ 19/2 ⁻				
1664.9	$(11/2^+)$	1169	495.184	$13/2^+$				
		1364	301.622	$11/2^{+}$				
1685.3	(19/2)	212.4	1472.7	10/01				
17/1.9	$(15/2^{+})$	1278	495.184	13/2+				
1776 3	23/2-	293	301.022 1483.43	$\frac{11}{2^{-1}}$				
1786.6	$(21/2^{-})$	367	1419.6	$(17/2^{-})$	[E2]			
1787.6	(19/2)	204	1583.8	(17/2)				
		384	1403.2	$15/2^{-}$				
1803.7	(21/2)	211.8	1591.9	(19/2)				
1819.1	(19/2')	270.2	1548.4	1 //2 '				
1863.09	$23/2^{+}$	324.0	1504.8	$\frac{13/2}{21/2^+}$				
1000.07	20/2	623.4	1239.47	$19/2^+$				

 ∞

$\gamma(^{181}\text{Ta})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}
1866.0		1866 [#]	100#	0.0	7/2+		2761.0		2761 [#]	100#	0.0	7/2+
1932.76	$25/2^{-}$	324.0		1608.85	23/2-		2800.0		2800 <mark>#</mark>	100 [#]	0.0	7/2+
		625.5		1307.11	$21/2^{-}$		2807.0		2807 [#]	100 [#]	0.0	7/2+
1935.0		1935 <mark>#</mark>	100 [#]	0.0	7/2+		2812.0		2812 [#]	100 [#]	0.0	7/2+
2001.2	$(17/2^+)$	1506		495.184	$13/2^{+}$		2835.0		2835 [#]	100 [#]	0.0	7/2+
2014.7	(21/2)	227		1787.6	(19/2)		2845.0		2845 [#]	100 [#]	0.0	7/2+
		431		1583.8	(17/2)		2892.0		2892 [#]	100 [#]	0.0	7/2+
2097.0		2097 [#]	100 [#]	0.0	$7/2^{+}$		2898.0		2898 [#]	100 [#]	0.0	$7/2^{+}$
2098.1	$25/2^{-}$	322		1776.3	$23/2^{-}$		2929.0		2929 <mark>#</mark>	100 [#]	0.0	$7/2^{+}$
2105.0		2105 [#]	100 [#]	0.0	$7/2^{+}$		2967.0		2967 [#]	100 [#]	0.0	7/2+
2122.5	$(21/2^+)$	303.0		1819.1	$(19/2^+)$		2968.1	$29/2^+$	758		2210.1	$25/2^+$
	a # /a+	574.5		1548.4	$17/2^+$		3016.0	a. (a_	3016 [#]	100 [#]	0.0	7/2+
2210.1	25/2+	347		1863.09	23/2+		3021.3	31/2-	745	100 [#]	2276.3	27/2-
		670.8		1539.31	21/2+		3023.0		3023 "	100"	0.0	7/2+
2227.9		130		2098.1	25/2-		3029.0		3029 "	100"	0.0	7/2+
		295	4 o o #	1932.76	25/2-		3035.0		3035"	100"	0.0	7/2*
2240.0		2240 "	100"	0.0	7/2+		3054.1		3048 "	100 [#]	6.237	9/2-
2253.0	(0.5.(0	2253"	100"	0.0	7/2+				3054"	85 [#] 21	0.0	7/2+
2260.6	$(25/2^{-})$	4/4		1786.6	$(21/2^{-})$	[E2]	3065.0		3065"	100"	0.0	7/2+
2262.6	(23/2)	248		2014.7	(21/2)		30/4.2		2938"	100"	136.262	9/2 ⁺
		475	100 [#]	1/8/.6	(19/2)				30/4"	/1" 16	0.0	7/2+
2272.0	07/0-	2272"	100"	0.0	7/2+		3081.0		3081"	100"	0.0	7/2+
2276.3	27/2	343		1932.76	25/2		3086.0		3086"	100"	0.0	1/2'
2200.0		668	100#	1608.85	23/2		3092.0		3092"	100"	0.0	1/2"
2289.0		2289"	100"	0.0	1/2		3108.1		3102"	8/" 14	6.237	9/2
2297.1		2161"	20" 2	136.262	9/2		2220.0		3108"	100"	0.0	1/2 ' 7/2+
0.400.1		2297"	100"	0.0	1/2*		3320.0		3320"	100"	0.0	1/2" 7/2+
2400.1		2264" 2400 #	100"	136.262	9/2 ⁺		3329.0		3329" 2407 #	100"	0.0	1/2 ⁺
0410.1		2400" 2412 [#]	90^{-19}	0.0	1/2 ⁻		5407.0		5407" (201 #	100.	0.0	1/2 ·
2418.1		2412" 2419 [#]	65" <i>18</i>	6.237	9/2 7/2+		6417.7		6281" (410 [#]		136.262	9/2 ⁺
0440.1		2418" 2212 [#]	100"	0.0	1/2 ⁺		1(17.0)	(21/2+)	0418"		0.0	$1/2^{-1}$
2448.1		2312" 2449 [#]	40" 8	136.262	9/2 ⁺		1017.2+X	$(21/2^{+})$	213		1403.2+X	$(19/2^{+})$
2510.0		2448°	100	0.0	7/2*		1855.5+X	$(23/2^{+})$	230		1017.2+X	$(21/2^{+})$
2519.0	(25/2)	2519" 519	100	0.0 2014 7	(21/2)		2113 0+v	$(25/2^{+})$	450 260		1403.2+x 1853.3+x	$(19/2^+)$ $(23/2^+)$
2580.1	$\frac{(23/2)}{27/2^+}$	717.0		1863.09	$\frac{(21/2)}{23/2^+}$		2113.0TA	(23/2)	496		1617.2 + x	$(23/2^+)$ $(21/2^+)$
2642.8	29/2-	710		1932.76	25/2-		2393.7+x	$(27/2^+)$	281		2113.0+x	$(25/2^+)$
									540		1853.3+x	$(23/2^+)$

9

 $^{181}_{73}{\rm Ta}_{108}\text{-}9$

$\gamma(^{181}\text{Ta})$ (continued)

- [†] Except those noted, $E\gamma's$ are weighted averages of values from ¹⁸¹Hf β decay, ¹⁸¹W ε decay, ¹⁸⁰Ta(n, γ), ¹⁸¹Ta IT decay, Coulomb Excitation, ¹⁷⁶Yb(¹¹B, α 2n γ) and ¹⁸¹Ta(²³⁸U,²³⁸U' γ). $\Delta(E\gamma)$ =0.3 keV assumed for those from ¹⁷⁶Yb(¹¹B, α 2n γ) (1998Dr09); and $\Delta(E\gamma)$ =1 keV assumed for those from
- 176 Yb(11 B, $\alpha 2n\gamma$) (1998Sa60) and from 181 Ta(238 U, 238 U' γ).
- [‡] From ¹⁸¹Hf β decay, except as noted.
- [#] From ¹⁸¹Ta(γ, γ').
- [@] See comments in Adopted Levels at 1403.3.
- [&] From Coulomb Excitation.
- ^{*a*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- ^b Placement of transition in the level scheme is uncertain.

From ENSDF

 $^{181}_{73}{\rm Ta}_{108}$

 $^{181}_{73}{\rm Ta}_{108}$

Level Scheme (continued)

Intensities: Type not specified

Level Scheme (continued) Intensities: Type not specified

Legend

>	$I_{\gamma} < 2\% \times I_{\gamma}^{max}$
	$I_{\gamma} < 10\% \times I_{\gamma}^{max}$
	$I_{\gamma} > 10\% \times I_{\gamma}^{max}$
	γ Decay (Uncertain)

¹⁸¹₇₃Ta₁₀₈

 $^{181}_{73}$ Ta $_{108}$

Adopted Levels, Gammas (continued)

 $^{181}_{73}{\rm Ta}_{108}$