		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Sc. Wu	NDS 106, 367 (2005)	31-Aug-2005

Parent: ¹⁸¹Os: E=0.0; $J^{\pi}=1/2^-$; $T_{1/2}=105 \text{ min } 3$; $Q(\varepsilon)=2960 \ 30$; $\mathscr{K}\varepsilon+\mathscr{K}\beta^+$ decay=100.0 1971Ak03: ¹⁸¹Os activity produced by proton on Au, ¹⁶O on Tm, or ¹¹B on Lu; β spectrograph with a magnet, Ge(Li) detectors, NaI(Tl) detectors; measured E γ , I γ , I(ce), $\gamma\gamma$ -coin, $\gamma\gamma$ -delay, ICC; deduced log ft, level J^{π} , $T_{1,2}$.

Level scheme from 1971Ak03.

¹⁸¹ Re L	levels
---------------------	--------

E(level)	$J^{\pi \dagger}$	T _{1/2}	Comments
0.0	5/2+	19.9 h 7	T _{1/2} : from Adopted Levels.
118.01 5	7/2+		·/~ 1
263.03 8	9/2-		
266.41 21	9/2+		
356.75 10	5/2-	96 ns 4	$T_{1/2}$: from $\gamma \gamma(t)$ (1971Ak03).
390.6? <i>3</i>	9/2-		
432.47 11	$1/2^{-}$		
599.67 12	3/2-		
787.6 4	$(1/2^+, 3/2^+)$		
826.77 22	$(1/2,3/2)^+$		
831.62 22	$3/2^{+}$		
021 5 2	$\frac{1}{2}, \frac{3}{2}$		
1000 52 6	(1/2 ,3/2)		
1059.92.5	(-)		
1060.38 22	3/2+		
1108.03 25	$1/2^{-}.3/2^{-}$		
1191.63 22	$1/2^{-}, 3/2^{-}$		
1385.4 6	$(1/2^{-}, 3/2)$		
1434.4 <i>3</i>	$(3/2^{-})$		
1442.66 24	3/2-		
1924.8 4	$(3/2)^{-}$		
1937.6 5	$1/2^+, 3/2^+$		
1946.1 5	3/2-		
1958.5 6	$(1/2^+, 3/2^+)$		
2015.3.5	$(1/2^+, 3/2^+)$		
2091.0 3	$\frac{1}{2}, \frac{3}{2}$		
2137.9 3	$\frac{3}{2}$		
2426.0.8	$(1/2^{-} 3/2)$		
2482.3 3	$3/2^{-}$		
2866.6 4	$1/2^{-}, 3/2^{-}$		
[†] From Ad	lopted Levels.		

 ε, β^+ radiations

E(decay)	E(level)	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^\dagger$	Comments
(9×10 ¹ 3)	2866.6	4.6 6	3.7 6	4.6 6	 εK=0.2 3; εL=0.54 18; εM+=0.21 10 Log <i>ft</i>: very low log <i>ft</i> value seems to indicate the configuration of the final level as 3 quasiparticle state with ν1/2[521]⊗ν7/2[514]⊗π9/2[514].

⁸¹ Os ε decay (105 min)	1971Ak03 (continued)
--	----------------------

ϵ, β^+ radiations (continued)									
E(decay)	E(level)	$I\beta^+$ †	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger}$	Comments			
$(4.8 \times 10^2 \ 3)$	2482.3		1.04 18	6.34 11	1.04 18	εK=0.782 4; εL=0.165 3; εM+=0.0531 10			
$(5.3 \times 10^2 \ 3)$	2426.0		0.38 11	6.89 15	0.38 11	$\varepsilon K=0.788$ 3: $\varepsilon L=0.1608$ 20: $\varepsilon M+=0.0516$ 8			
$(7.9 \times 10^2 \ 3)$	2172.3		4.9 7	6.15 8	4.9 7	ε K=0.8014 11; ε L=0.1508 8; ε M+=0.0478 3			
$(8.2 \times 10^2 \ 3)$	2137.9		1.4 5	6.74 17	1.4 5	εK=0.8026 10; εL=0.1499 8; εM+=0.0475 3			
$(8.7 \times 10^2 \ 3)$	2091.0		2.5 4	6.54 9	2.5 4	εK=0.8040 9; εL=0.1489 7; εM+=0.04712 24			
$(9.4 \times 10^2 \ 3)$	2015.3		5.3 9	6.29 9	5.3 9	εK=0.8059 8; εL=0.1475 6; εM+=0.04658 20			
$(1.00 \times 10^3 \ 3)$	1958.5		0.73 21	7.20 14	0.73 21	εK=0.8072 7; εL=0.1466 5; εM+=0.04624 18			
$(1.01 \times 10^3 \ 3)$	1946.1		1.2 5	7.00 19	1.2 5	εK=0.8075 7; εL=0.1464 5; εM+=0.04617 17			
$(1.02 \times 10^3 \ 3)$	1937.6		2.3 5	6.73 11	2.3 5	εK=0.8076 7; εL=0.1463 5; εM+=0.04613 17			
$(1.04 \times 10^3 \ 3)$	1924.8		1.4 6	6.95 19	1.4 6	εK=0.8079 6; εL=0.1461 5; εM+=0.04606 17			
$(1.52 \times 10^3 \ 3)$	1442.66	0.0043 14	3.9 7	6.86 9	3.9 7	av Eβ=242 14; εK=0.8132; εL=0.14141 23; εM+=0.04432 9			
$(1.53 \times 10^3 \ 3)$	1434.4	0.0022 9	1.9 6	7.17 15	1.9 6	av Eβ=245 14; εK=0.8132; εL=0.14134 23; εM+=0.04430 9			
$(1.57 \times 10^3 \ 3)$	1385.4	0.0019 8	1.1 4	7.44 17	1.1 4	av Eβ=267 14; εK=0.8131 1; εL=0.14098 23; εM+=0.04417 8			
$(1.77 \times 10^3 \ 3)$	1191.63	0.016 5	3.0 7	7.11 11	3.0 7	av $E\beta$ =353 14; ε K=0.8114 6; ε L=0.1395 3; ε M+=0.04364 9			
$(1.85 \times 10^3 \ 3)$	1108.03	0.027 10	3.3 11	7.11 15	3.3 11	av $E\beta$ =390 14; ε K=0.8098 8; ε L=0.1387 3; ε M+=0.04339 10			
$(1.90 \times 10^3 \ 3)$	1060.38	0.034 15	3.4 15	7.12 20	3.4 15	av $E\beta$ =411 14; ε K=0.8085 9; ε L=0.1383 3; ε M+=0.04324 10			
$(1.90 \times 10^3 \ 3)$	1059.9?	0.012 4	1.2 4	7.58 15	1.2 4	av Eβ=411 14; εK=0.8085 9; εL=0.1383 3; εM+=0.04324 10			
						Feeding from above probable because decay from $1/2^-$ must be at least second forbidden.			
$(1.96 \times 10^3 \ 3)$	1000.5?	0.006 5	0.5 4	8.0 4	0.5 4	av Eβ=437 14; εK=0.8067 11; εL=0.1377 4; εM+=0.04304 11			
$(2.03 \times 10^3 \ 3)$	931.5	0.063 17	3.8 10	7.12 12	3.9 10	av E β =467 14; ε K=0.8041 13; ε L=0.1370 4; ε M+=0.04280 12			
$(2.09 \times 10^3 \ 3)$	867.20	< 0.02	<1.0	>7.7	<1	av Eβ=495 14; εK=0.8013 15; εL=0.1362 4; εM+=0.04255 12			
$(2.13 \times 10^3 \ 3)$	831.62	0.08 3	3.4 14	7.22 18	3.5 14	av Eβ=511 14; εK=0.7995 16; εL=0.1358 4; εM+=0.04241 13			
$(2.13 \times 10^3 \ 3)$	826.77	0.30 4	13.0 14	6.64 6	13.3 14	av Eβ=513 14; εK=0.7993 17; εL=0.1357 4; εM+=0.04239 13			
$(2.17 \times 10^3 \ 3)$	787.6	0.13 2	5.2 7	7.06 7	5.3 7	av Eβ=530 14; εK=0.7972 18; εL=0.1352 4; εM+=0.04223 13			
$(2.36 \times 10^3 \ 3)$	599.67	0.29 10	6.7 22	7.02 15	7.0 23	av Eβ=613 14; εK=0.7845 24; εL=0.1325 5; εM+=0.04134 16			
$(2.53 \times 10^3 \ 3)$	432.47	<1.1	<17	>6.7	<18	av $E\beta = 686 \ 14$; $\varepsilon K = 0.770 \ 3$; $\varepsilon L = 0.1296 \ 6$;			

[†] Absolute intensity per 100 decays.

εM+=0.04041 19

$\gamma(^{181}\text{Re})$

I γ normalization: normalized assuming the sum I γ +ce(g.s.)=100.

ω

Eγ	Ι _γ @	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^π	Mult. [‡]	δ^{\ddagger}	α &	Comments
33.8 ^{<i>a</i>} 3	0.0055 18	390.6?	9/2-	356.75	5/2-	E2#		633	$ \begin{aligned} &\alpha(L) = 474; \ \alpha(M) = 119.4 \\ &E_{\gamma}: \ transition \ observed \ by \ 1968Ha39 \ but \ not \\ & placed. \ Placement \ by \ evaluator \ on \ the \ basis \ of \\ & multipolarity, \ closeness \ in \ energy \ to \ calculated \\ & value \ of \ 36 \ keV \ by \ 1974Si14, \ and \ apparent \ E2 \\ & enhancement, \ which \ is \ consistent \ with \ this \ \gamma \\ & being \ the \ lowest \ member \ of \ the \ decoupled \\ & rotational \ band \ 1/2[541]. \\ & I_{\gamma}: \ calculated \ from \ ce(L23) \ and \ \alpha(L23) \\ & (1968Ha39). \end{aligned} $
75.73 4	93	432.47	1/2-	356.75	5/2-	E2 [#]		13.34	$\alpha(K)= 0.983; \alpha(L)= 9.3; \alpha(M)= 2.359; \alpha(N+)= 0.695$ $I_{\gamma}:$ calculated from ce data of 1968Ha39 and α . $I_{\gamma}=21.6$ from 1971Ak03 is too large to be consistent with the intensity balance. Contamination from neighboring Re x rays is possible.
100.0 5	1.5 5	931.5	$(1/2^+, 3/2^+)$	831.62	3/2+	[M1]		5.34	$\alpha(\mathbf{K}) = 4.42; \ \alpha(\mathbf{L}) = 0.711; \ \alpha(\mathbf{M}) = 0.1621; \ \alpha(\mathbf{N}+) = 0.0498$
104.5 5	1.6 5	931.5	$(1/2^+, 3/2^+)$	826.77	(1/2,3/2)+	[M1]		4.71	$\alpha(K) = 3.89; \ \alpha(L) = 0.626; \ \alpha(M) = 0.1427; \ \alpha(N+) = 0.0439$
118.01 5	64 7	118.01	7/2+	0.0	5/2+	M1+E2	0.22 +3-2	3.266 15	$\alpha(K) = 2.65 \ 3; \ \alpha(L) = 0.475 \ 10; \ \alpha(M) = 0.1096$ 25: $\alpha(N+) = 0.0336 \ 8$
145.02 6	7.0 15	263.03	9/2-	118.01	7/2+	E1		0.1478	$\alpha(K) = 0.1215; \ \alpha(L) = 0.02034; \ \alpha(M) = 0.00464; \ \alpha(N+) = 0.00137$
148.66 8	0.8 3	266.41	9/2+	118.01	7/2+	M1(+E2)	<0.13	1.724 17	$\alpha(K) = 1.427; \ \alpha(L) = 0.2295; \ \alpha(M) = 0.0523; \ \alpha(N+) = 0.01599$
^x 153.4 5 ^x 158.0 5	0.3 2 1.2 5	500.67	2/2-	122 17	1/2-	M1 + E2	o.1.1	0.886.0	$\alpha(\mathbf{K}) = 0.611.7; \ \alpha(\mathbf{L}) = 0.2001.21; \ \alpha(\mathbf{M}) = 0.0509$
107.23 0	15.2	399.07	5/2	432.47	1/2	WII+E2	~1.1	0.000 9	$a(\mathbf{K}) = 0.0117$, $a(\mathbf{L}) = 0.209121$, $a(\mathbf{M}) = 0.0008$ 5; $a(\mathbf{N}+)=0.01518$ 16
^x 210.92 <i>12</i>	0.8 3					(M1)		0.645	α (K)= 0.534; α (L)= 0.0852; α (M)=0.01943; α (N+)=0.00587
^x 223.09 14	1.3 5					(M1)		0.553	$\alpha(K) = 0.458; \ \alpha(L) = 0.0728; \ \alpha(M) = 0.01661; \ \alpha(N+) = 0.00501$
228.73 12	8 2	1060.38	3/2+	831.62	3/2+	M1+E2	1.2 +5-4	0.33 7	$\alpha(\mathbf{K}) = 0.25\ 7;\ \alpha(\mathbf{L}) = 0.0670\ 3;\ \alpha(\mathbf{M}) = 0.01609$ 21: $\alpha(\mathbf{N}+) = 0.00478\ 4$
233.63 10	93	1060.38	3/2+	826.77	(1/2,3/2)+	M1+E2	1.3 +3-2	0.30 3	$\alpha(K) = 0.22 \ 3; \ \alpha(L) = 0.0621 \ 3; \ \alpha(M) = 0.01494 \ 5; \ \alpha(N+) = 0.00443$

					¹⁸¹ Os ε deca	y (105 min)	ed)					
	$\gamma(^{181}\text{Re})$ (continued)											
E_{γ}	$I_{\gamma}^{@}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [‡]	δ^{\ddagger}	α &	Comments			
238.75 11	220 18	356.75	5/2-	118.01	7/2+	E1		0.0416	$\alpha(K) = 0.0345; \ \alpha(L) = 0.00546; \ \alpha(M) = 0.00124; \ \alpha(N+) = 0.00037$			
242.74 12	30 7	599.67	3/2-	356.75	5/2-	M1+E2 [#]	0.53 9	0.379 16	$\alpha(K) = 0.306 \ 16; \ \alpha(L) = 0.0564 \ 3; \ \alpha(M) = 0.0131; \ \alpha(N+.) = 0.00393$			
267.65 15	5 1	867.20	1/2-,3/2-	599.67	3/2-	M1+E2	0.9 2	0.241 25	$\alpha(K) = 0.189\ 24;\ \alpha(L) = 0.0403\ 10;\ \alpha(M) = 0.00948\ 15;\ \alpha(N+) = 0.00282\ 6$			
310.5 5	1.8 5	2482.3	3/2-	2172.3	3/2-	[M1]		0.2235	$\alpha(K) = 0.1855; \ \alpha(L) = 0.0293; \ \alpha(M) = 0.00667; \ \alpha(N+) = 0.00201$			
324.4 2	2.4 [†] 5	1191.63	1/2-,3/2-	867.20	1/2-,3/2-	(M1)		0.1986	α (K)= 0.1649; α (L)= 0.0260; α (M)=0.00592; α (N+)=0.00178			
326.4 2	1.4 [†] 11	1434.4	(3/2 ⁻)	1108.03	1/2-,3/2-	(M1)		0.1953	$\alpha(K) = 0.1622; \ \alpha(L) = 0.0256; \ \alpha(M) = 0.00582; \ \alpha(N+) = 0.00175$			
334.0 6	1.0 4	1442.66	3/2-	1108.03	1/2-,3/2-	[M1]		0.1836	$\alpha(K) = 0.1525; \ \alpha(L) = 0.02401; \ \alpha(M) = 0.00547; \ \alpha(N+) = 0.00165$			
344.2 2	1.8 3	2482.3	3/2-	2137.9	3/2-	M1+E2	0.7 3	0.133 21	$\alpha(K) = 0.108 \ 19; \ \alpha(L) = 0.0195 \ 16; \ \alpha(M) = 0.0045 \ 4; \ \alpha(N+) = 0.00135 \ 10$			
356.7 2	8.0 15	356.75	5/2-	0.0	5/2+	(E1)		0.01578	α (K)=0.01317; α (L)=0.00202; α (M)=0.00046; α (N+)=0.00014			
x394.0 5	2.5 5					(M1)		0.1181	$\alpha(K)= 0.0982; \ \alpha(L)=0.01539; \ \alpha(M)=0.00350; \ \alpha(N+)=0.00105$			
434.5 2	9.5 19	867.20	1/2-,3/2-	432.47	1/2-	M1(+E2)	<0.7	0.0912 7	$\alpha(K) = 0.0758; \alpha(L) = 0.01186; \alpha(M) = 0.00270; \alpha(N+) = 0.00081$			
×460.5 8 509.0 10	1.5 <i>10</i> 1.0 <i>6</i>	1108.03	1/2-,3/2-	599.67	3/2-	[M1]		0.0605	$\alpha(K)$ = 0.0501; $\alpha(L)$ =0.00781			
567.2 7	4.6 13 $2.2^{\dagger} 11$	1434.4	(3/2 ⁻)	867.20	1/2-,3/2-	[M1]		0.0457	$\alpha(K)=$ 0.0379; $\alpha(L)=0.00589$			
x569.8 7 592.0 7	1.8 <i>16</i> 3.5 <i>13</i>	1191.63	1/23/2-	599.67	3/2-	(M1)		0.0409	$\alpha(K) = 0.0339; \alpha(L) = 0.00527$			
675.4 <i>4</i>	7.7 18	1108.03	1/2-,3/2-	432.47	1/2-	(M1)		0.0292	$\alpha(K)=0.02424; \ \alpha(L)=0.00375$			
728.6 6	2.5 8 5.1 <i>12</i>	2866.6	1/2-,3/2-	2137.9	3/2-	M1		0.02410	$\alpha(K)=0.02001; \ \alpha(L)=0.00308$			
^x 749.6 8	4 4											
751.4 5	16 [†] 4	1108.03	$1/2^{-}, 3/2^{-}$	356.75	5/2-	(E2)		0.00863	α (K)=0.00688; α (L)=0.00132			
759.5 5	12.0 22	1191.63	$1/2^{-}, 3/2^{-}$	432.47	$1/2^{-}$	M1		0.02169	$\alpha(K) = 0.01801; \ \alpha(L) = 0.00277$			
786.0 6	3.8 12	1385.4	$(1/2^-, 3/2)$	599.67	$3/2^{-}$	[M1] (E2)		0.01989	$\alpha(\mathbf{K}) = 0.01652; \ \alpha(\mathbf{L}) = 0.00253$			
787.04 x792.010	20.5	/8/.0	$(1/2^{+}, 3/2^{+})$	0.0	5/2	(E2)		0.00780	$\alpha(\mathbf{K}) = 0.00625; \ \alpha(\mathbf{L}) = 0.00117$			
796.9 ^{<i>a</i>} 5	6.0 15	1059.9?	(_)	263.03	9/2-	(E2)		0.00761	$\alpha(K)=0.00610; \alpha(L)=0.00114$			
827.0 4	100	826.77	$(1/2,3/2)^+$	0.0	5/2+	E2		0.00704	$\alpha(K)=0.00566; \alpha(L)=0.00104$			
831.5 4	38 5	831.62	3/2+	0.0	5/2+	M1		0.01725	α (K)=0.01433; α (L)=0.00219			
835.0 10	1.0 5	1434.4	$(3/2^{-})$	599.67	3/2-	[M1]		0.01707	$\alpha(K) = 0.01418; \ \alpha(L) = 0.00217$			
842.5 6	4.1 8	1442.66	3/2	599.67	3/2	[MI]		0.01669	$\alpha(K)=0.01387; \alpha(L)=0.00212$			

4

From ENSDF

 $^{181}_{75}\mathrm{Re}_{106}$ -4

 $^{181}_{75}\mathrm{Re}_{106}$ -4

γ ⁽¹⁸¹ Re) (continued)											
nts											
3 18											
11											
10											
10											
1 1 1											

S

From ENSDF

L

					¹⁸¹ Os ε de	cay (105 mi	in)	1971Ak	03 (con	tinued)
						$\gamma(^{181}R)$	e) (co	ntinued)		
Eγ	$I_{\gamma}^{@}$	E _i (level)	J_i^π	\mathbf{E}_{f}	J_f^{π}	Mult. [‡]	ć	5‡		
1552.0.10	0.7.4	2482.3	$3/2^{-}$	931.5	$(1/2^+, 3/2^+)$	[E1]				
1568.0 8	5.1 15	1924.8	$(3/2)^{-}$	356.75	5/2-	(M1)				
1573.0 8	5.4 15	2172.3	3/2-	599.67	3/2-	(E2)				
1589.5 10	3.3 10	1946.1	3/2-	356.75	5/2-	M1				
^x 1619.3 8	2.8 10					M1				
^x 1624.4 8	1.8 8					M1+E2	0.8	+7-5		
^x 1653.7 10	0.5 3									
^x 1659.0 10	0.3 2									
^x 1667.0 10	0.3 2									
^x 1684.6 <i>12</i>	0.3 2									
1704.9 6	7.0 15	2137.9	$3/2^{-}$	432.47	$1/2^{-}$	Ml				
1/40.6 5	6.2 11	21/2.3	3/2	432.47	1/2	MI+E2	≈1			
1/60./ 5	4.4 10	2800.0	$\frac{1}{2}, \frac{3}{2}$	256 75	1/2, $3/2$	MI M1				
1/60.7 J	2.07	2157.9	5/2	550.75	5/2	IVI I				
x1800.8 10	0.84 104									
1826.2.10	0.8.3	2426.0	$(1/2^{-} 3/2)$	599.67	3/2-	[M1]				
x1836.2.20	0.0.2	2120.0	(1/2, 3/2)	577.07	5/2	[[11]]				
x1846.0 20	0.3 2									
^x 1866.7 17	0.8 4									
x1913.0 20	0.3 2									
^x 1927.0 15	0.5 3									
1937.0 <i>12</i>	1.0 4	1937.6	$1/2^+, 3/2^+$	0.0	5/2+	E2				
1946.0 12	3.0 10	1946.1	3/2-	0.0	5/2+	E1				
^x 1981.7 10	6.0 18									
1993.3 <i>15</i>	0.9 4	2426.0	$(1/2^{-}, 3/2)$	432.47	1/2-	[M1]				
2000.4 15	0.9 5	2866.6	1/2-,3/2-	867.20	1/2-,3/2-	[M1]				
2015.0 15	0.9 5	2015.3	$(1/2^+, 3/2^+)$	0.0	5/2+	[M1]				
2070.0 20	0.2 1	2426.0	(1/2, 3/2)	356.75	5/2	[M1]				
*2096.0 20 *2115.2 20	0.32									
~2115.2 20	0.84	2127.0	2/2-	0.0	5/2+	E 1				
2156.0 15 x2156.7 15	5.8 IU 156	2157.9	5/2	0.0	3/2	EI E1				
x2225 0 20	0.8.4					LI				
x2257 8 14	135					F1				
2267 3 20	0.2.1	2866.6	$1/2^{-} 3/2^{-}$	599 67	3/2-	[M1]				
x2284.5 20	0.2 1	2000.0	1/2 ,5/2	577.07	5/2	[[,,11]				
x2302.9 14	2.0 7									
x2355.0 20	0.2 1									
x2396.0 20	0.2 1									
2436.2 15	0.5 3	2866.6	1/2-,3/2-	432.47	$1/2^{-}$	[M1]				
x2465.0 20	0.2 1									
2483.0 20	0.2 1	2482.3	3/2-	0.0	5/2+	[E1]				

 $^{181}_{75}\mathrm{Re}_{106}$ -6

6

$\gamma(^{181}\text{Re})$ (continued)

[†] Unresolved doublet in γ data. Intensities divided by the evaluator using ce(K) data (1968Ha39) and coincidence intensities (1971Ak03).

[‡] From ce subshell ratios of 1968Ha39 assuming 20% intensity uncertainty, and from ce(K) data of 1971Ak03 assuming the 827-keV γ is E2 and the uncertainty in intensity is 20% below 200 keV and 40% above 200 keV.

[#] From conversion coefficients (1968Ha39).

[@] For absolute intensity per 100 decays, multiply by 0.199 12.

 $^{\&}$ Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^{*a*} Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

¹⁸¹₇₅Re₁₀₆

8

¹⁸¹Os ε decay (105 min) 1971Ak03

