		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Sc. Wu	NDS 106, 367 (2005)	31-Aug-2005

Parent: ¹⁸¹Au: E=0.0; $J^{\pi}=(3/2^{-})$; $T_{1/2}=13.7$ s *14*; $Q(\varepsilon)=6503\ 25$; $\%\varepsilon+\%\beta^+$ decay=97.3 5

1992Sa03: ¹⁸¹Au produced by 200 MeV p and 270 MeV ³He bombardment of Pt-B alloy target and from decay of parent activities. ISOCELE mass separator, mini-orange β spectrometer with Si(Li) detector; γ , $\gamma\gamma$ (t), ce. Supersedes 1984Bo32.

The decay scheme was constructed by the authors on the basis of coincidence and multipolarity information and energy sums, and it accommodates 92% of the observed photon intensity. A few more levels and placements were proposed by 1991Fi01 on a similar basis, as indicated. In the absence of knowledge concerning the plausible g.s. to g.s. $\varepsilon + \beta^+$ branch, and in view of the significant unplaced γ intensity, the decay scheme has not been normalized. A g.s. branch would have log ft < 5.9 if $I(\varepsilon + \beta^+) > 6\%$, and log ft < 5.1 if $I(\varepsilon + \beta^+) > 42\%$. The strongest excited state branch (to the 2102 level) would have log ft < 5.9 or < 5.1, respectively, if the g.s. branch were < 88% or < 25%.

181 Pt Levels

For possible band assignments, see Adopted Levels.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0#	1/2-		
79.40 [#] 6	3/2-		
93.93 [#] 7	5/2-		
116.66 9	(7/2)-	>300 ns	T _{1/2} : based on absence of coin between γ 's feeding this level and the γ deexciting it.
166.64 8	(5/2)-		C C C C C C C C C C C C C C C C C C C
235.52 10	(9/2)-		
256.36 11	$(7/2)^{-3}$		
276.02 11	(9/2)+	0.16 µs 14	$T_{1/2}$: 20 ns to 300 ns, based on delayed coin.
278.11# 9	$7/2^{-\alpha}$		
287.16 9	('/2) ⁺		
300.87" 11	$9/2^{-\alpha}$		
380.09 17	(9/2)		
525.03 13	(7/2)-œ		
572.9? ^{••} 4	$11/2^{-}$		
597.64 <i>12</i> 650 55 <i>24</i>	(5/2) $(5/2)^+$		
658 72 10	$(5/2, 7/2)^{-}$		
661.702^{0} 10	$(1/2, 3/2, 5/2^{-})$		
708.68 23	$(1/2,3/2,5/2)^{-}$		
729.53 16	1/2-,3/2-		
750.39 12	$(1/2^{-})$		
760.56 20	(7/2 ⁻ ,9/2 ⁻ ,11/2 ⁻)		
783 76 15	$(5/2^{-})$		
821.86 24	$(5/2^+, 7/2, 9/2^-)$		
835.36 16	(5/2)-		
850.40 16	(5/2,7/2,9/2)-		
855.09 19	$(1/2, 3/2, 5/2)^{-}$		
809.1 4	5/2-7/2-		
001.03 23 886 49 17	$\frac{3}{2}, \frac{1}{2}$		
904.31 23	$(5/2^{-},7/2^{-})$		
917.54 24	x-1 ,·1=)		

1992Sa03 (continued)

			¹⁸¹ Pt Le	vels (continued)	
E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$\mathrm{J}^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
920.16 20 921.83 20 943.47 12 965.67 13 966.71 25 1006.2 4 1007 802 [@] 10	$(5/2^+,7/2,9/2^-) (5/2^-,7/2,9/2^-) (3/2,5/2,7/2)^+ $	1256.1 4 1281.75 21 1309.49 19 1326.36 19 1371.7 4 1400.68 18 1417 80 23	$(5/2,7/2,9/2)^{-}$ $(1/2)^{-}$ $(3/2^{-},5/2^{-})$ $(\leq 7/2)$ $(1/2,3/2,5/2^{-})$ $(1/2,3/2,5/2^{-})$	2053.21 21 2082.72 14 2085.12 9 2095.07 10 2101.83 10 2122.52 13 2126 65 13	$\begin{array}{c} (3/2^{-},5/2^{-}) \\ (3/2^{-},5/2^{-}) \\ (5/2)^{-} \\ (5/2^{-}) \\ (1/2,3/2,5/2)^{-} \\ (\leq 7/2)^{-} \\ (1/2,3/2,5/2)^{-} \end{array}$
1057.331 10 1050.44 15 1087.33 23 1217.22? [@] 22	$(5/2^+, 7/2)$	1474.37 22 2015.41 <i>10</i>	$(1/2,3/2,5/2^{-})$ $(1/2^{-},3/2,5/2^{-})$ $(1/2,3/2,5/2^{-})$ $(1/2^{-},3/2,5/2^{-})$	2137.40 <i>10</i> 2153.5 <i>4</i> 2240.94? [@] 18	(1/2, 3/2, 5/2) $(1/2^{-}, 3/2, 5/2^{-})$ $(5/2^{-}, 7/2^{-})$ $(\leq 7/2)$

 181 Au ε decay

[†] From least-squares fit to $E\gamma'$ s, omitting doubtfully or multiply placed transitions.

[‡] From Adopted Levels.
[#] Band(A): 1/2[521] band.

^(a) Introduced by 1991Fi01. [&] No significant $\varepsilon + \beta^+$ feeding to this level is expected from the (3/2⁻) parent; the intensity imbalance at this level is presumed to result from incompleteness of the decay scheme.

ε, β^+ radiations

E(decay)	E(level)	Comments
$(4.26 \times 10^{3}^{\dagger} 3)$	2240.94?	av E β =1483 242; ε K=0.52 9; ε L=0.089 16; ε M+=0.028 5
$(4.35 \times 10^{3}^{\dagger} 3)$	2153.5	av Eβ=1523 242; εK=0.51 9; εL=0.086 16; εM+=0.027 5
$(4.37 \times 10^3 \ 3)$	2137.40	av E β =1530 242; ϵ K=0.50 9; ϵ L=0.086 16; ϵ M+=0.027 5
		$\mathscr{H}(\varepsilon + \beta^+) \approx 2.9 \ 10$, log $ft \approx 5.6$ if I γ normalization ≈ 0.017 and no ε to g.s.
$(4.38 \times 10^3 \ 3)$	2126.65	av E β =1535 242; ε K=0.50 9; ε L=0.086 16; ε M+=0.027 5
		$\%(\varepsilon + \beta^+) \approx 3.1$ 14, log $ft \approx 5.6$ if I γ normalization ≈ 0.017 and no ε to g.s.
$(4.38 \times 10^3 \ 3)$	2122.52	av E β =1537 242; ε K=0.50 9; ε L=0.086 16; ε M+=0.027 5
		$(\varepsilon + \beta^+) \approx 1.9$ 7, log $ft \approx 5.8$ if I γ normalization ≈ 0.017 and no ε to g.s.
$(4.40 \times 10^3 \ 3)$	2101.83	av E β =1546 242; ε K=0.50 9; ε L=0.085 16; ε M+=0.027 5
		$(\varepsilon + \beta^+) \approx 12$ 4, log $ft \approx 5.0$ if I γ normalization ≈ 0.017 and no ε to g.s.
$(4.41 \times 10^3 \ 3)$	2095.07	av E β =1549 242; ε K=0.50 9; ε L=0.085 16; ε M+=0.027 5
		$\%(\varepsilon + \beta^+) \approx 5.3 \ 16$, log $ft \approx 5.3$ if I γ normalization ≈ 0.017 and no ε to g.s.
$(4.42 \times 10^3 \ 3)$	2085.12	av E β =1554 242; ε K=0.50 9; ε L=0.084 16; ε M+=0.027 5
2		$\%(\varepsilon + \beta^+) \approx 11 4$, log $ft \approx 5.0$ if I γ normalization ≈ 0.017 and no ε to g.s.
$(4.42 \times 10^3 \ 3)$	2082.72	av E β =1555 242; ε K=0.49 9; ε L=0.084 16; ε M+=0.027 5
2		$(\varepsilon + \beta^+) \approx 3.8 \ 22$, log $ft \approx 5.5$ if I γ normalization ≈ 0.017 and no ε to g.s.
$(4.45 \times 10^3 \ 3)$	2053.21	av E β =1569 242; ε K=0.49 9; ε L=0.084 16; ε M+=0.027 5
2		$(\varepsilon + \beta^+) \approx 1.5 5$, log $ft \approx 5.9$ if I γ normalization ≈ 0.017 and no ε to g.s.
$(4.49 \times 10^3 3)$	2015.41	av $E\beta$ =1586 243; ε K=0.48 9; ε L=0.082 16; ε M+=0.026 5
		$\mathscr{H}(\varepsilon+\beta^+)\approx 2.2$ 9, log $ft\approx 5.7$ if 1γ normalization ≈ 0.017 and no ε to g.s.
$(5.18 \times 10^{3} ^{\text{T}} 3)$	1326.36	av E β =1901 245; ε K=0.38 8; ε L=0.064 14; ε M+=0.020 5
		$(\varepsilon + \beta^+) \approx 0.8 3$, log $ft \approx 6.4$ if I γ normalization ≈ 0.017 and no ε to g.s.
$(5.25 \times 10^{3} ^{\dagger} ^{3})$	1256.1	av E β =1933 245; ε K=0.37 8; ε L=0.063 14; ε M+=0.020 5
		$(\varepsilon + \beta^+) \approx 0.8 \ 3$, log $ft \approx 6.4$ if I γ normalization ≈ 0.017 and no ε to g.s.
$(5.42 \times 10^{3}^{\dagger} 3)$	1087.33	av E β =2011 246; ε K=0.35 8; ε L=0.059 13; ε M+=0.019 4
. ,		$\%(\varepsilon + \beta^+) \approx 0.8 3$, log $ft \approx 6.5$ if I γ normalization ≈ 0.017 and no ε to g.s.
$(5.50 \times 10^{3}^{\dagger} 3)$	1007.80?	av E β =2048 246; ε K=0.34 8; ε L=0.057 13; ε M+=0.018 4
· · · · · · · · · · · · · · · · · · ·		, , ,, ,,

Continued on next page (footnotes at end of table)

¹⁸¹Au ε decay **1992Sa03** (continued)

 ϵ, β^+ radiations (continued)

E(decay)	E(level)	Comments
$(5.62 \times 10^{3}^{\dagger} 3)$	881.05	av Eβ=2106 246; εK=0.32 7; εL=0.055 12; εM+=0.017 4
$(5.65 \times 10^{3}^{\dagger} 3)$	855.09	av Eβ=2118 246; εK=0.32 7; εL=0.054 12; εM+=0.017 4
$(5.67 \times 10^{3}^{\dagger} 3)$	835.36	av E β =2127 246; ε K=0.32 7; ε L=0.054 12; ε M+=0.017 4 %(ε + β ⁺) \approx 1.4 6, log ft \approx 6.3 if I γ normalization \approx 0.017 and no ε to g.s.
$(5.75 \times 10^{3}^{\dagger} 3)$	750.39	av Eβ=2167 247; εK=0.31 7; εL=0.052 12; εM+=0.016 4
$(5.84 \times 10^{3}^{\dagger} 3)$	658.72	av E β =2209 247; ε K=0.30 7; ε L=0.050 11; ε M+=0.016 4
$(5.91 \times 10^{3}^{\dagger} 3)$	597.64	av E β =2238 247; ε K=0.29 7; ε L=0.049 11; ε M+=0.016 4
$(6.34 \times 10^{3}^{\dagger} 3)$	166.64	av Eβ=2438 248; εK=0.25 6; εL=0.042 10; εM+=0.013 3
(6503 [†] 25)	0.0	av E β =2515.58; ε K=0.2330; ε L=0.03936; ε M+=0.01247

 † Existence of this branch is questionable.

From ENSDF

 $\gamma(^{181}\text{Pt})$

Iγ normalization: ≈ 0.017 if $\Sigma(I(\gamma+ce)$ to g.s.)=100 (i.e., if no $\varepsilon+\beta^+$ branch to g.s.); however, if $J^{\pi}(^{181}Au)=3/2^-$, a branch to the $1/2^{-181}$ Pt g.s. is likely. Consequently, the decay scheme has not been normalized.

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	α^{c}	$I_{(\gamma+ce)}$	Comments
(11.1)		287.16	(7/2)+	276.02	(9/2)+	[M1]	192	2.5×10 ² 15	$\alpha(M)=145$ E_{γ} : transition not observed; E_{γ} from level energy difference. $I_{(\gamma+ce)}$: authors' estimate, based on intensity balance at 276 level, assuming no ε feeding to that level (none is expected since $\Delta J=(3)$) and $\alpha(159\gamma)\approx 1$ (for anomalous E1 transition).
(14.5)		93.93	5/2-	79.40	3/2-	[M1]	195	1.77×10 ³ 20	$\alpha(L) \approx 109; \ \alpha(M) = 65$ E _{γ} : transition not observed; E γ from level energy difference. I _($\gamma+ce$) : ≤ 1980 from intensity balance at 79 level; ≥ 1560 from intensity balance at 94 level if 23γ and 73γ are pure M1.
19.7 <i>3</i>	15 5	276.02	(9/2)+	256.36	(7/2)-	E1	6.7 2		 α(L)=5.1 2; α(M)=1.24 5 Mult.: α(exp)<25 (cf. α(E1)=6.7, α(M1)=148) from intensity balance at 256 level.
22.8 1	23 8	116.66	$(7/2)^{-}$	93.93	5/2-	(M1) ^b	95.1		α (L)=73.1 9; α (M)=16.9 2
30.6 <i>3</i> 40.5 <i>1</i>	1.7 <i>3</i> 67 <i>10</i>	287.16 276.02	$(7/2)^+$ $(9/2)^+$	256.36 235.52	$(7/2)^{-}$ $(9/2)^{-}$	[E1] E1	2.05 <i>4</i> 0.955 <i>5</i>		$\alpha(L)=1.57 4$; $\alpha(M)=0.371 10$ $\alpha(L)=0.731 5$; $\alpha(M)=0.172 1$ Mult.: $\alpha(\exp)<4$ (cf. $\alpha(E1)=0.95$, $\alpha(M1)=17.4$) from intensity balance at 236 level.
50.0 1	92 14	166.64	$(5/2)^{-}$	116.66	$(7/2)^{-}$	(M1) ^b	9.33		α (L)=7.16 5; α (M)=1.646 10; α (N+)=0.521 3
72.6 <i>1</i> 79.4 <i>1</i> 87.3 <i>1</i> 89.9 <i>1</i> 94.0 <i>1</i>	≈ 50 ≈ 250 28 4 44 7 220 33	166.64 79.40 166.64 256.36 93.93	(5/2) ⁻ 3/2 ⁻ (5/2) ⁻ (7/2) ⁻ 5/2 ⁻	93.93 0.0 79.40 166.64 0.0	5/2 ⁻ 1/2 ⁻ 3/2 ⁻ (5/2) ⁻ 1/2 ⁻	(M1) ^b [M1,E2] [M1,E2] [M1,E2] E2	3.12 13.4 <i>1</i> 9.5 8 8.6 9 6.44		$\alpha(L)=2.39; \ \alpha(M)=0.554 \ 3; \ \alpha(N+)=0.173 \\ \alpha(K)=0.673; \ \alpha(L)=9.4; \ \alpha(M)=2.44; \ \alpha(N+)=0.738 \\ \alpha(K)=5 \ 4; \ \alpha(L)=3.7 \ 24; \ \alpha(M)=0.9 \ 7; \ \alpha(N+)=0.29 \ 19 \\ \alpha(K)=4 \ 4; \ \alpha(L)=3.3 \ 20; \ \alpha(M)=0.8 \ 6; \ \alpha(N+)=0.25 \ 16 \\ \alpha(K)=0.760; \ \alpha(L)=4.25; \ \alpha(M)=1.10; \ \alpha(N+)=0.336 \\ \text{Mult}: \ \alpha(M)=0.760; \ \alpha(L)=4.25; \ \alpha(M)=0.761; \ \alpha(N+)=0.336 \\ \text{Mult}: \ \alpha(M)=0.761; \ \alpha(M)=0.12; \ \alpha(M)=0.762; \ \alpha(M)=0.7$
118.9 <i>1</i>	68 10	235.52	(9/2)-	116.66	(7/2)-	E2(+M1)	3.3 9		Mult.: $\alpha(M)exp=1.12$, $\alpha(M)exp=0.21$. $\alpha(K)=2.0$ 15; $\alpha(L)=1.0$ 5; $\alpha(M)=0.25$ 12; $\alpha(N+)=0.08$ 4 Mult.: $\alpha(L12)exp=1.15$ 15; value exceeds both M1 theory (0.57) and E2 theory (0.83), but authors assign M1+E2. Based on the ce spectrum in fig 4a, the stated precision appears optimistic; the evaluator suspects a typographic error, and adopts E2(+M1).
120.6 <i>1</i>	130 20	287.16	$(7/2)^+$	166.64	(5/2)-	E1	0.256		α (K)=0.207; α (L)=0.0372; α (M)=0.0086; α (N+)=0.00262 Mult.: α (L)exp<0.33.
123.8 <i>3</i>	12.0 18	380.09	$(9/2^{-})$	256.36	$(7/2)^{-}$	[M1,E2]	2.9 9		$\alpha(K)=1.8$ 13; $\alpha(L)=0.8$ 4; $\alpha(M)=0.21$ 10; $\alpha(N+)=0.07$ 3
139.9 ^{<i>f</i>} 3	≈6	256.36	$(7/2)^{-}$	116.66	$(7/2)^{-}$	[M1,E2]	2.0 7		$\alpha(K)=1.3$ 9; $\alpha(L)=0.52$ 17; $\alpha(M)=0.13$ 5; $\alpha(N+)=0.040$ 14
144.6 <i>3</i> 159.4 <i>1</i>	≈5 140 <i>21</i>	380.09 276.02	$(9/2^{-})$ $(9/2)^{+}$	235.52 116.66	$(9/2)^{-}$ $(7/2)^{-}$	[M1,E2] (E1)	1.8 7 0.125		$\alpha(K)=1.2 \ 8; \ \alpha(L)=0.46 \ 13; \ \alpha(M)=0.11 \ 4; \ \alpha(N+)=0.035 \ 12 \ \alpha(K)=0.102; \ \alpha(L)=0.0176; \ \alpha(M)=0.00406; \ \alpha(N+)=0.00124$

4

						¹⁸¹ Au ε decay	1992Sa03	(continu	ued)	
						$\gamma(^{181})$	Pt) (continue	d)		
Eγ	ŧ	Iγ [‡]	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	J_f^π	Mult.	δ	α^{c}	Comments
162.6	3	6.4 10	256.36	(7/2)-	93.93	5/2-	[M1,E2]	_	1.2 5	Mult.: $\alpha(L)\exp\approx 0.04$; designated by authors as abnormal E1, possibly analogous to a 161 γ in ¹⁸³ Pt connecting 9/2[624] and 7/2[514] levels. $\alpha(K)=0.9$ 6; $\alpha(L)=0.29$ 6; $\alpha(M)=0.072$ 18;
170.5	1 10	0 15	287.16	(7/2)+	116.66	(7/2)-	E1		0.106	$\alpha(N+)=0.022 \ 6$ $\alpha(K)=0.086; \ \alpha(L)=0.0148; \ \alpha(M)=0.00340;$ $\alpha(N+)=0.00104$
184.3	1 3	76	278.11	7/2-	93.93	5/2-	M1(+E2)	≤1.3	0.98 23	Mult.: α (K)exp<0.11. α (K)=0.75 25; α (L)=0.177 13; α (M)=0.042 5; α (N+)=0.0132 13 Mult.: α (L)exp=0.13 6.
198.6	1 26	0 [#] 39	278.11	7/2-	79.40	3/2-	E2		0.372	$\alpha(K)=0.174; \ \alpha(L)=0.149; \ \alpha(M)=0.0378; \ \alpha(N+)=0.0115$ Mult.: $\alpha(K)\exp=0.16 \ 4. \ \alpha(L)\exp=0.16 \ 3,$ but includes
206.9	1 6	5 10	300.87	9/2-	93.93	5/2-	E2		0.324	$\alpha(K)=0.157; \ \alpha(L)=0.125; \ \alpha(M)=0.0318; \ \alpha(N+)=0.0097$ Mult.: $\alpha(K)\exp=0.17$ 4, $\alpha(M)\exp=0.022$ 10.
213.6	<i>f</i> 3 ≈	7	380.09	(9/2 ⁻)	166.64	(5/2) ⁻	[E2]		0.291	$\alpha(K)=0.145; \ \alpha(L)=0.110; \ \alpha(M)=0.0278; \ \alpha(N+)=0.0085$
263.4	3 1	3.0 20	380.09	(9/2 ⁻)	116.66	(7/2) ⁻	[M1,E2]		0.30 16	α (K)=0.23 <i>15</i> ; α (L)=0.054 <i>7</i> ; α (M)=0.0129 <i>11</i> ; α (N+)=0.0040 <i>4</i>
268.8	f 3	9.0 14	525.03	(7/2)-	256.36	(7/2) ⁻	M1		0.427	$\alpha(K)=0.352; \ \alpha(L)=0.0575; \ \alpha(M)=0.0132; \ \alpha(N+)=0.00414$ Mult.: $\alpha(K)=0.00414$
289.4	3 ≈1	0 #	525.03	$(7/2)^{-}$	235.52	$(9/2)^{-}$				
294.8	af $3 \leq 1$	0	572.9?	11/2-	278.11	7/2-	(E2)		0.105	α (K)=0.0643; α (L)=0.0306; α (M)=0.00764; α (N+)=0.00234
320.0 338.3 *353.9	f 3 3 3	2.4 <i>4</i> 8.6 <i>13</i> 2 1 3	917.54 1281.75		597.64 943.47	$(5/2)^-$ $(3/2,5/2,7/2)^+$				Placement and multipolarity from adopted gammas.
358.4	1 3	5 5	525.03	(7/2)-	166.64	(5/2)-	M1(+E2)	<1.2	0.16 4	$\alpha(K)=0.13$ 4; $\alpha(L)=0.023$ 4; $\alpha(M)=0.0053$ 7; $\alpha(N+)=0.00166$ 22
363.5	3	9.2 14	650.55	(5/2)+	287.16	(7/2)+	M1		0.188	$\alpha(K) = 0.155; \alpha(L) = 0.0253; \alpha(M) = 0.00580; \alpha(N+) = 0.00181$
380.2	3	9.7 15	760.56	(7/2 ⁻ ,9/2 ⁻ ,11/2 ⁻)	380.09	(9/2 ⁻)	M1		0.167	Mult.: $\alpha(K)\exp=0.16 \ \delta.$ $\alpha(K)=0.138; \ \alpha(L)=0.0224; \ \alpha(M)=0.00514;$ $\alpha(N+)=0.00161$
400.0	3	6.6 10	1050.44	(5/2+,7/2)	650.55	(5/2)+				Mult.: $\alpha(K)$ exp=0.15 8.
•										

S

 $^{181}_{78}\text{Pt}_{103}\text{--}5$

I

				1	⁸¹ Au ε decay	1992Sa03 (co	ontinued)		
${\rm E_{\gamma}}^{\dagger}$	I_{γ} ‡	E _i (level)	J_i^π	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult.	δ	α^{c}	Comments
402.6 1	≈30 [#]	658.72	(5/2,7/2)-	256.36	(7/2)-	M1(+E2)		0.09 5	α (K)=0.07 5; α (L)=0.015 5; α (M)=0.0034 10; α (N+)=0.0011 4 Mult.: α (L)exp=0.024 7 (contains ¹⁸¹ Ir impurity); 1992Sa03 assign M1 to both components.
408.2^{f} 1	24 4	525.03	$(7/2)^{-}$	116.66	$(7/2)^{-}$				
425.2 <i>I</i> 431.0 <i>I</i>	100 15	597.64	(5/2) ⁻	235.52 166.64	(9/2) $(5/2)^{-}$	M1+E2	0.8 +6-4	0.09 3	α (K)=0.070 20; α (L)=0.013 3; α (M)=0.0030 6; α (N+)=0.00093 15
x439.7 <i>3</i>	≈10					M1(+E2)		0.07 4	Mult.: $\alpha(K)\exp=0.07/2$. $\alpha(K)=0.06/4$; $\alpha(L)=0.011/4$; $\alpha(M)=0.0027/9$; $\alpha(N+)=0.0008/3$ Mult.: $\alpha(K)\exp=0.07$
452.1 3	5.3 8	1417.80	$(1/2, 3/2, 5/2^{-})$	965.67	+				
455.6 <i>3</i> 460.0 <i>3</i>	2.8 <i>4</i> 4.5 7	835.36 1281.75	(5/2)-	380.09 821.86	(9/2 ⁻) (5/2 ⁺ ,7/2,9/2 ⁻)				
480.9 ^(@) 1	≈120	597.64	$(5/2)^{-}$	116.66	$(7/2)^{-}$				
482.7 <i>3</i> 486 8 3	5.1 8 1 9 3	783.76 764.9	(5/2 ⁻)	300.87	9/2 ⁻ 7/2 ⁻				
491.9 <i>I</i>	≈22 [#]	658.72	$(5/2,7/2)^{-}$	166.64	$(5/2)^{-}$				
504.0 <i>3</i>	≈6	760.56	(7/2 ⁻ ,9/2 ⁻ ,11/2 ⁻)	256.36	(7/2)-				
505 <i>1</i> ×522 0 3	≈8 436	783.76	$(5/2^{-})$	278.11	7/2-				
$x_{524} 1^{\&} 3$	≈25 [#]								
525.5 <i>3</i> 531 <i>1</i>	≈10	760.56 1474.37	$(7/2^{-}, 9/2^{-}, 11/2^{-})$ $(1/2, 3/2, 5/2^{-})$	235.52 943.47	$(9/2)^{-}$ $(3/2,5/2,7/2)^{+}$				I_{ν} : weak.
534.6 ^d 3	≈50 ^{d#}	821.86	$(5/2^+, 7/2, 9/2^-)$	287.16	$(7/2)^+$,
534.6 ^{df} 3	≈50 ^{d#}	835.36	(5/2)-	300.87	9/2-				
541.9 3	37 6	658.72	(5/2,7/2)-	116.66	$(7/2)^{-}$	(E2)		0.0206	$\alpha(K)=0.0154; \ \alpha(L)=0.00391$ Mult.: $\alpha(K)\exp\approx 0.02.$
543 1	<10	1326.36	$(3/2^{-}, 5/2^{-})$	783.76	$(5/2^{-})$				
549.6 <i>3</i>	28 4 11.0 <i>1</i> 7	821.86 850.40	$(5/2^+, 1/2, 9/2^-)$ $(5/2, 7/2, 9/2)^-$	276.02 300.87	(9/2)* 9/2 ⁻	E2		0.0199	$\alpha(K)=0.0149; \ \alpha(L)=0.00376$ Mult.: $\alpha(K)\exp\approx 0.02.$
555.5 ^{af} 3 557.2 3	15.0 <i>23</i> 15.0 <i>23</i>	1217.22? 835.36	(5/2)-	661.70? 278.11	(1/2,3/2,5/2 ⁻) 7/2 ⁻				× / L
563.0 ^f 3	4.5 7	729.53	1/2-,3/2-	166.64	(5/2)-				
567.3 ^{<i>f</i>} 3	4.3 6	869.1		300.87	9/2 ⁻				
572.63	6.3 9 10 0 <i>15</i>	850.40	$(5/2, 1/2, 9/2)^{-}$	278.11	1/2				
579.9 <i>3</i>	7.3 11	835.36 881.05	(5/2) 5/2 ⁻ ,7/2 ⁻	256.36 300.87	(7/2) 9/2 ⁻				

 $^{181}_{78}\text{Pt}_{103}\text{-}6$

 $^{181}_{78}\text{Pt}_{103}\text{-}6$

					181 Au ε decay	1992Sa03 (co	ntinued)	
					γ (¹⁸¹ P	t) (continued)			
${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\ddagger}	E _i (level)	${ m J}^{\pi}_i$	E_f	J_f^π	Mult.	δ	α^{c}	Comments
^x 583 1	<10					E0+M1+E2		≥0.26	Mult., α : from $\alpha(K)\exp \ge 0.20$.
591.0 <i>3</i>	≈15 [#]	869.1		278.11	7/2-				
595.9 ^f 3	13.0 20	1417.80	$(1/2, 3/2, 5/2^{-})$	821.86	$(5/2^+, 7/2, 9/2^-)$				
597.0 <i>3</i>	≈10	1326.36	$(3/2^{-}, 5/2^{-})$	729.53	1/2-,3/2-				
599.23	19.3	886.49	$(7/2)^+$	287.16	$(7/2)^+$	M1(+E2)		0.022.17	$\alpha(K) = 0.027.15; \alpha(L) = 0.0047.10$
005.5 5	24 4	881.05	5/2 ,1/2	278.11	1/2	MI(+E2)		0.033 17	$\alpha(K)=0.02775$; $\alpha(L)=0.004779$ Mult.: $\alpha(K)\exp=0.03070$ for doublet dominated by this transition.
603.3 ^e 3 ^x 609.0 3	5.0 ^e 8 5.1 8	904.31	(5/2 ⁻ ,7/2 ⁻)	300.87	9/2-				
610.4 3	48 7	886.49	$(7/2)^+$	276.02	(9/2)+	M1(+E2)	≤1.1	0.039 9	$\alpha(K)=0.032$ 8; $\alpha(L)=0.0054$ 10 Mult.: $\alpha(K)\exp=0.034$ 9.
614.7 3	36 5	708.68	(1/2,3/2,5/2) ⁻	93.93	5/2-	E2		0.0154	$\alpha(K)=0.0118; \alpha(L)=0.00273$ Additional information 2. Mult.: $\alpha(K)\exp\approx 0.011$.
^x 617.4 3	10.0 15								
621.0 <i>3</i>	$\approx 8^{\#}$	921.83	(5/2 ⁻ ,7/2,9/2 ⁻)	300.87	9/2-				
624.9 ^{<i>f</i>} 3	9.0 14	881.05	5/2-,7/2-	256.36	$(7/2)^{-}$				
625.7 3	11.0 17	904.31	$(5/2^-, 7/2^-)$	278.11	7/2-				
627.5 3	16.0 24	2101.83	$(1/2,3/2,5/2)^{-1}$	14/4.37	$(1/2,3/2,5/2^{-})$			0.020.15	
629.2° 1	79 12	708.68	(1/2,3/2,5/2) ⁻	79.40	3/2-	(M1+E2)		0.030 15	$\alpha(K)=0.024$ 13; $\alpha(L)=0.0042$ 17 Additional information 3. Mult : $\alpha(K)=0.028$ 10 for doublet
633.2 <i>3</i>	14 2	920.16	$(5/2^+, 7/2, 9/2^-)$	287.16	$(7/2)^+$				
635.4 <i>3</i>	21 3	729.53	1/2-,3/2-	93.93	5/2-				
642.2 3	≈6.4	1371.7	$(\leq 7/2)$	729.53	$1/2^{-}, 3/2^{-}$				
643.63 644.43	274 264	921.83	(5/2, 1/2, 9/2) $(5/2^+, 7/2, 9/2^-)$	276.02	$\frac{1}{2}$ (9/2) ⁺				
645.5 3	33 5	2101.83	$(1/2,3/2,5/2)^{-}$	1456.39	$(1/2^{-}, 3/2, 5/2^{-})$				
650.0 [@] 1	110 17	729.53	1/2 ⁻ ,3/2 ⁻	79.40	3/2-	(M1+E2)		0.027 14	α (K)=0.022 <i>12</i> ; α (L)=0.0039 <i>16</i> Additional information 4.
656.3 1	70 11	943.47	(3/2,5/2,7/2)+	287.16	$(7/2)^+$	E2(+M1)	≥3.2	0.0145 12	Mult.: $\alpha(K) \exp=0.020$ 6 for doublet. $\alpha(K) = 0.0113$ 11; $\alpha(L) = 0.00241$ 14 Mult.: $\alpha(K) \exp=0.009$ 3.
^x 658.4 3	≈30								
661.7 ^{af} 1	160 24	661.70?	(1/2,3/2,5/2 ⁻)	0.0	1/2-				Additional information 1. Mult.: $\alpha(K)\exp \leq 0.024$ 6.
x666.1 3 668.5 3	35 5 23 <i>3</i>	835.36	(5/2)-	166.64	(5/2) ⁻	E0+M1+E2		0.14 5	α : estimated from α (K)exp. Mult.: α (K)exp=0.11 4; greatly exceeds α (K)(M1)=0.032.

7

From ENSDF

 $^{181}_{78} Pt_{103}\text{--}7$

 $^{181}_{78} Pt_{103}\text{--}7$

L

					181 Au ε decay	1992Sa03 (continued)	
					$\gamma(^{18}$	¹ Pt) (continued)	
${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\ddagger}	E _i (level)	J^{π}_i	E_f	J_f^π	Mult.	α ^{<i>c</i>}	Comments
671.0 ^{<i>d</i>} 1	190 ^d 29	750.39	(1/2 ⁻)	79.40	3/2-			Additional information 5. Mult : $\alpha(K)$ exp=0.023 10 for doubly-placed γ
671.0 ^d 1	190 ^d 29	764.9		93.93	5/2-			Additional information 6. Mult: $\alpha(K)$ as $n = 0.023$ 10 for doubly placed α
678.5 1	58 9	965.67	+	287.16	$(7/2)^+$	M1,E2	0.025 13	$\alpha(K)=0.020 \ 11; \ \alpha(L)=0.0035 \ 14$ Mult.: $\alpha(K)\exp=0.020 \ 9.$
^x 679.9 3	5.5 8							
684.0 <i>3</i> ^x 685.0 <i>3</i>	25 <i>4</i> 18 <i>3</i>	2101.83	(1/2,3/2,5/2)-	1417.80	(1/2,3/2,5/2 ⁻)			
688.7 ^e 3	≈40 ^e	855.09	(1/2,3/2,5/2)-	166.64	(5/2)-			α (K)exp=0.024 <i>10</i> for doublet.
688.7 ^e 3	$\approx 20^{e}$	966.71		278.11	7/2-			Mult.: $\alpha(K)\exp=0.024$ 10 for doublet.
700.9 3	18 3	2101.83	$(1/2,3/2,5/2)^{-}$	1400.68	$(1/2,3/2,5/2^{-})$			
704.4 3 x709.0 3	20 3	/83./6	(5/2)	/9.40	3/2	$E0 \pm M1 \pm E2$	>0.17	Mult α : from $\alpha(K) \exp(0.13)$
709.05	20.4	1271 7	(<7/2)	661 709	$(1/2) 2/2 5/2^{-})$	L0+WI1+L2	20.17	Mult., a . Holli $a(\mathbf{K}) \in \mathbb{R}^{p \times 0.15}$.
x724 3 3	29 4	13/1./	$(\leq 1/2)$	001.702	(1/2,3/2,3/2)			
724.55 728 7 ^e 3	$\approx 12^{e}$	1006.2		278 11	7/2-			
728.7 ^e 3	≈12 ^e	1326.36	$(3/2^{-}, 5/2^{-})$	597.64	$(5/2)^{-}$			
729.6 <i>3</i>	49 7	729.53	1/2-,3/2-	0.0	1/2-	M1	0.0305	$\alpha(K)=0.0252; \ \alpha(L)=0.00400$
741 4 2	20.2	025 26	$(5/2)^{-}$	02.02	5/2-			Mult.: $\alpha(K) \exp (0.030)$.
741.4 5	20.5	855.50 1006 2	(3/2)	95.95 256.36	$\frac{3}{2}$ $(7/2)^{-}$			
751.0.3	20 J 45 7	917.54		166.64	$(7/2)^{-}$			
756.4 3	29 4	850.40	$(5/2,7/2,9/2)^{-}$	93.93	5/2-			
763.3 <i>3</i>	10.0 15	1050.44	$(5/2^+, 7/2)$	287.16	$(7/2)^+$			
764.5 <mark>&f</mark> 3	7.0 11	881.05	5/2-,7/2-	116.66	$(7/2)^{-}$			
774.6 <i>3</i>	35 5	1050.44	$(5/2^+, 7/2)$	276.02	$(9/2)^+$			
775.5 ^e 3	40 ^e 6	855.09	$(1/2, 3/2, 5/2)^{-}$	79.40	3/2-			
775.5 ^e 3	30 ^e 5	2101.83	$(1/2,3/2,5/2)^{-}$	1326.36	$(3/2^{-}, 5/2^{-})$			
^x 782.6 ^x 3	41 6							
783.73	48 7	783.76	$(5/2^{-})$	0.0	$1/2^{-}$			I , much
787.4 3	15.0 23	881.05	5/2-,7/2-	93.93	5/2-	M1	0.0251	α (K)=0.0207; α (L)=0.00329 Mult : α (K)exp=0.031 10
^x 789.2 3	34 5					M1(+E0)		Mult.: $\alpha(K)\exp=0.051$ 10.
792.2 3	39 6	2101.83	(1/2,3/2,5/2)-	1309.49	(1/2)-	M1,E2	0.017 8	$\alpha(K)=0.014$ 7; $\alpha(L)=0.0023$ 10 Mult.: $\alpha(K)\exp=0.018$ 9.
^x 794.9 <i>3</i>	11.0 17							
^x 801.5 3	10.0 15							
^x 808.7 3	19 3							
809.4 3	11.0 17	1087.33	(1.10.2.10.5.10) -	278.11	7/2-			
820.2 3	14.0 21	2101.83	$(1/2, 3/2, 5/2)^{-}$	1281.75				

 $^{181}_{78} \mathrm{Pt}_{103} \text{--} 8$

From ENSDF

 $^{181}_{78} \mathrm{Pt}_{103}\text{--}8$

L

				18	¹ Au ε decay	1992Sa03 (co	ontinued)	
					$\gamma(^{18}$	¹ Pt) (continued)		_	
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	J^{π}_{i}	E_{f}	J_f^π	Mult.	δ	α ^{c}	Comments
825.4 3	12.0 18	904.31	$(5/2^-, 7/2^-)$	79.40	3/2-				
^x 843.8 ^{&} 3	21 3								
^x 845 1	11								I_{γ} : weak.
$^{-8}834.03$	≈11 5 4 9	1456 20	(1/2 - 2/2 - 5/2 -)	507 61	$(5/2)^{-}$				
*868.4	3.4 0	1430.39	(1/2 ,5/2,5/2)	397.04	(3/2)	M1		0.0196	α (K)=0.0162; α (L)=0.00255 α (K)exp=0.022 7 E_{γ} : Reported in the conversion electron data table only.
^x 875.3 3	6.7 10								
884.7 ^{af} 3 ^x 903.5	≈11	2101.83	(1/2,3/2,5/2)-	1217.22?		M1		0.0177	$\alpha(K)=0.0146; \ \alpha(L)=0.00231$ $\alpha(K)\exp>0.024$ Mult.: may include an E0 component. E_{γ} : Reported in the conversion electron data table only.
920.5 3 *926.8 3 *928.5 3 *962.7 3	36 5 15.0 23 19 3 35 5	1087.33		166.64	(5/2) ⁻				
970.8 ^{&} f 3	8.1 12	1087.33	$(5/2) 7/2 0/2)^{-1}$	116.66	$(7/2)^{-}$	M1(+E2)	-2.5	0.010 4	$\alpha(\mathbf{W}) = 0.009.4$; $\alpha(\mathbf{U}) = 0.0013.5$
JJJ.1 J	555	1250.1	(3/2, 7/2, 9/2)	250.50	(1/2)	$WII(\pm E2)$	<5.5	0.010 4	Mult.: $\alpha(K) = 0.003 4$.
1007.8 ^{@af} 1	65 10	1007.80?	(1/2 ⁻ ,3/2 ⁻)	0.0	1/2-	(M1)		0.0134	$\alpha(K)=0.0111; \alpha(L)=0.00174$ Mult.: $\alpha(K)=0.015 \ 3$ for doublet.
^x 1013.1 3	6.1 9								
1015.5 ^{<i>af</i>} 3 ^x 1022.4 3	9.3 <i>14</i> 23 <i>3</i>	2101.83	(1/2,3/2,5/2) ⁻	1087.33					
1032.4 3	8.6 13	2082.72	(3/2 ⁻ ,5/2 ⁻)	1050.44	$(5/2^+, 7/2)$				
1034.8 3	28 4	2085.12	$(5/2)^{-}$	1050.44	$(5/2^+,7/2)$				
1044.7 3	5.80 16024	2095.07	$(3/2^{-})$ $(3/2^{-}5/2^{-})$	278 11	$(3/2^{+}, 1/2)$ $7/2^{-}$				
1050.8^{af} 3	9.4 14	1217.22?	(3/2 ,3/2)	166.64	$(5/2)^{-}$				
1070.1^{f} 3	9.4 14	1326.36	$(3/2^{-}, 5/2^{-})$	256.36	$(7/2)^{-}$				
1086.6 3	20 3	2053.21	$(3/2^{-}, 5/2^{-})$	966.71	(1/2)				
1089.2 ^{<i>f</i>} 3	17 <i>3</i>	1256.1	(5/2,7/2,9/2)-	166.64	$(5/2)^{-}$				
^x 1094.0 3	19 <i>3</i>				· · ·				
^x 1102.1						E0(+M1+E2)			$\alpha(K)\exp>0.13$
^x 1112.6.3	13.0.20								E_{γ} . Observed only in ce spectrum.
1117 1	≈19	2082.72	$(3/2^-, 5/2^-)$	965.67	+				I_{γ} : for multiplet; undivided intensity given.
1119 <i>1</i>	≈19	2085.12	$(5/2)^{-}$	965.67	+				I_{γ} : for multiplet; undivided intensity given.

9

 $^{181}_{78} Pt_{103}\text{-}9$

L

 $^{181}_{78}\text{Pt}_{103}\text{-}9$

					181 Au ε decay	1992Sa03 (co	ntinued)	
					γ (¹⁸¹ P	t) (continued)		
${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\ddagger}	E _i (level)	${ m J}^{\pi}_i$	E_f	J_f^π	Mult.	α ^C	Comments
1121 ^{<i>af</i>} <i>1</i> ^{<i>x</i>} 1126.8 <i>3</i>	≈19 [#] ≈22	1217.22?		93.93	5/2-			I_{γ} : for multiplet; undivided intensity given.
1129.4 <i>3</i>	≈13	2095.07	(5/2 ⁻)	965.67	+			
1158.5 <i>3</i>	≈28 [#]	2101.83	(1/2,3/2,5/2) ⁻	943.47	(3/2,5/2,7/2)+	E1	0.00163	α =0.00163; α (K)=0.00137; α (L)=0.00020 Mult : α (K)exp≈0.0013
1160.8 <i>3</i> 1163.0 <i>3</i> x1181.1 <i>3</i>	11.0 <i>17</i> 7.8 <i>12</i> 3.5 5	2082.72 2082.72	(3/2 ⁻ ,5/2 ⁻) (3/2 ⁻ ,5/2 ⁻)	921.83 920.16	(5/2 ⁻ ,7/2,9/2 ⁻) (5/2 ⁺ ,7/2,9/2 ⁻)			
1183.6 ^{<i>af</i>} 3 1198.6 3 ^x 1205.4 3	13.0 20 40 6 6.5 10	2101.83 2085.12	(1/2,3/2,5/2) ⁻ (5/2) ⁻	917.54 886.49	(7/2)+			
1208.4 <i>3</i> 1215.5 <i>3</i>	12.0 <i>18</i> 47 7	2095.07 1309.49	(5/2 ⁻) (1/2) ⁻	886.49 93.93	(7/2) ⁺ 5/2 ⁻	E2(+M1)	0.00378	α =0.00378; α (K)=0.00309; α (L)=0.00052 Mult.: α (K)exp \approx 0.0037; from this, δ (D,Q) \approx 2.3.
1230.0 <i>3</i>	24 4	1309.49	$(1/2)^{-}$	79.40	3/2-			
$1232.7^{f} 3$ $1234.7 3$ $1245.0 3$ $1246.8 3$	14.0 <i>21</i> 10.0 <i>15</i> 13.0 <i>20</i>	1326.36 2085.12 2095.07	$(3/2^{-}, 5/2^{-})$ $(5/2)^{-}$ $(5/2^{-})$ $(1/2, 2/2, 5/2)^{-}$	93.93 850.40 850.40	$5/2^{-}$ $(5/2,7/2,9/2)^{-}$ $(5/2,7/2,9/2)^{-}$ $(1/2,2/2,5/2)^{-}$	E0 + M1 + E2		Multiper(V) average 0.027.0
1240.85	30 J	2101.85	(1/2, 5/2, 5/2)	833.09	(1/2, 5/2, 5/2)	E0+M11+E2		Mult.: $a(\mathbf{K}) \exp (-0.027) $
$\begin{array}{c} 1232.5 \\ 1259.4 \\ f \\ 3 \\ 1263 \\ 1 \\ 1266.5 \\ 3 \\ x \\ 1271 \\ 2 \\ 3 \end{array}$	23 3 5.6 8 7.0 11 9.6 14	2095.07 2085.12 2101.83	$(5/2^{-})$ $(5/2)^{-}$ $(1/2,3/2,5/2)^{-}$	835.36 821.86 835.36	(5/2) ⁻ (5/2 ⁺ ,7/2,9/2 ⁻) (5/2) ⁻			I_{γ} : weak.
1273 1	2.0 17	2095.07	$(5/2^{-})$	821.86	$(5/2^+, 7/2, 9/2^-)$			I_{γ} : weak.
1288.1 ^{<i>f</i>} 3	9.5 14	2053.21	$(3/2^{-}, 5/2^{-})$	764.9				, ,
1297.2 ^{a&f} 3	7.7 12	2240.94?	(≤7/2)	943.47	$(3/2, 5/2, 7/2)^+$			
1309.6 ^{<i>f</i>} 3	<10 [#]	1309.49	(1/2)-	0.0	1/2-	E0+M1	>0.10	E _γ : from ce data; doublet of 1309.2γ and 1309.6γ. The 1309.2γ is largely attributable to an E1 transition in ¹⁸¹ Ir which has little impact on ce energy and intensity. Mult., <i>α</i> : α (K)exp>0.078.
1311.1 3 1318.0 3 1321.1 3 1323.5 <i>af</i> 3 1325.8 3 1332.2 3 x1334.8 3 1352 8 3	$\approx 7^{\#}$ 35 5 11.0 17 18 3 22 3 10.0 15 6.2 9 16 0 24	2095.07 2101.83 1400.68 2240.94? 1326.36 2082.72	$(5/2^{-}) (1/2,3/2,5/2)^{-} (1/2,3/2,5/2^{-}) (1/2,3/2,5/2^{-}) (3/2^{-},5/2^{-}) (3/2^{-},5/2^{-}) (3/2^{-},5/2^{-}) (3/2^{-},5/2^{-}) (3/2^{-},5/2^{-})$	783.76 783.76 79.40 917.54 0.0 750.39 729.53	$(5/2^{-})$ $(5/2^{-})$ $3/2^{-}$ $1/2^{-}$ $(1/2^{-})$ $1/2^{-} 3/2^{-}$			
1332.0 3	10.0 24	2002.12	(3/2,3/2)	149.55	1/2 ,3/2			

 $^{181}_{78}\text{Pt}_{103}\text{--}10$

From ENSDF

 $^{181}_{78}\text{Pt}_{103}\text{--}10$

L

ied)

$\gamma(^{181}\text{Pt})$ (continued)

E_{γ}^{\dagger}	Ι _γ ‡	E _i (level)	${ m J}^{\pi}_i$	E_f	${ m J}_f^\pi$	Mult.	δ	α ^C	Comments
1356.8 ^{<i>f</i>} 3	8.7 13	2015.41	$(1/2^-, 3/2, 5/2^-)$	658.72	$(5/2,7/2)^{-}$				
1362.5 3	41 6	1456.39	$(1/2^-, 3/2, 5/2^-)$	93.93	5/2-				
1368.6 ^{<i>f</i>} 3	9.7 15	2153.5	$(5/2^-, 7/2^-)$	783.76	$(5/2^{-})$				
1372.1 ^{<i>d</i>} 3	47 ^d 7	2101.83	(1/2,3/2,5/2)-	729.53	1/2-,3/2-	(M1,E2)		0.0046 16	α =0.0046 <i>16</i> ; α (K)=0.0038 <i>14</i> ; α (L)=0.00060 <i>20</i> Mult.: α (K)exp=0.004 <i>2</i> for doublet.
1372.1 ^{df} 3	47 ^d 7	2137.40	$(1/2^{-}, 3/2, 5/2^{-})$	764.9					
1387.3 <i>3</i>	10.0 15	2137.40	$(1/2^-, 3/2, 5/2^-)$	750.39	$(1/2^{-})$				
1393.1 3	43 6	2101.83	(1/2,3/2,5/2) ⁻	708.68	$(1/2,3/2,5/2)^{-}$	M1		0.00597	α =0.00597; α (K)=0.00494; α (L)=0.00077 Mult.: α (K)exp=0.0083 20.
1400.6 <i>3</i>	19 <i>3</i>	1400.68	$(1/2, 3/2, 5/2^{-})$	0.0	$1/2^{-}$				
1417.7 ^{df} 3	22 ^d 3	1417.80	$(1/2, 3/2, 5/2^{-})$	0.0	$1/2^{-}$				
1417.7 ^d 3	22 ^d 3	2126.65	$(1/2, 3/2, 5/2)^{-}$	708.68	$(1/2, 3/2, 5/2)^{-}$				
1422.5 <mark>af</mark> 3	6.7 10	2085.12	$(5/2)^{-}$	661.70?	$(1/2, 3/2, 5/2^{-})$				
^x 1424.6 3	12.0 18								
1426.6 3	20 3	2085.12	(5/2)-	658.72	(5/2,7/2)-	M1(+E2)	≤1.6	0.0046 11	α =0.0046 <i>11</i> ; α (K)=0.0038 <i>9</i> ; α (L)=0.00060 <i>13</i> Mult.: α (K)exp=0.006 <i>3</i> .
1432.9 ^{af} 3	6.7 10	2095.07	$(5/2^{-})$	661.70?	$(1/2, 3/2, 5/2^{-})$				
1436.4 3	22 3	2095.07	$(5/2^{-})$	658.72	$(5/2,7/2)^{-}$				
1439.5 ^{af} 3	21 3	2101.83	(1/2,3/2,5/2)-	661.70?	$(1/2, 3/2, 5/2^{-})$				
1455.7 [@] 3	17.0 26	1456.39	$(1/2^-, 3/2, 5/2^-)$	0.0	$1/2^{-}$				
1474.4 3	15.0 23	1474.37	$(1/2, 3/2, 5/2^{-})$	0.0	1/2-				
1484.9 3	23 3	2082.72	$(3/2^{-}, 5/2^{-})$	597.64	$(5/2)^{-}$				
1504.4 3	19.3	2101.83	(1/2, 3/2, 5/2)	597.64	(5/2)				
1511.5 ^a <i>j j</i>	9.8 15	2240.94?	$(\leq 1/2)$	729.53	1/2-,3/2-				
1579.3 ^{<i>a</i>}	9.1 14	2240.94?	(≤7/2)	661.70?	$(1/2,3/2,5/2^{-})$				
1705.1 ^J 3	5.2 8	2085.12	$(5/2)^{-}$	380.09	$(9/2^{-})$				
17/5.03	18 3	2053.21	(3/2 ,5/2)	278.11	1/2				
1784 1	$25 \ 3 \sim 4$	2085-12	$(5/2)^{-}$	300.87	9/2-				
1794.3.3	16.0 24	2005.07	$(5/2^{-})$	300.87	$9/2^{-}$				
1798.1 <i>I</i>	98 15	2085.12	$(5/2)^{-}$	287.16	$(7/2)^+$	E1			Mult.: $\alpha(K) \exp = 0.0006 \ 2.$
1804.8 <i>3</i>	24 4	2082.72	$(3/2^{-}, 5/2^{-})$	278.11	7/2-				
1807 <i>1</i>	≈30	2085.12	$(5/2)^{-}$	278.11	7/2-				
1807.8 <i>1</i>	≈100	2095.07	$(5/2^{-})$	287.16	$(7/2)^+$	(E1)			Mult.: $\alpha(K)\exp=0.0007\ 2$ for doublet.
1816.9 3	24 4	2095.07	$(5/2^{-})$	2/8.11	1/2-				
1852.0.3	1.9 12	2155.5	(5/2, 1/2)	300.87	9/2				
1860.2^{J} 3	22.3	2095.07	(5/2 ⁻)	235.52	(9/2)-				
1875.1°C J 3	12.0 18	2153.5	$(5/2^{-}, 7/2^{-})$	278.11	1/2-				
1886.2 ^J 3	12.0 18	2053.21	$(3/2^{-}, 5/2^{-})$	166.64	$(5/2)^{-}$				

 $^{181}_{78}\text{Pt}_{103}\text{-}11$

					¹⁸¹ Au <i>ε</i> decay 1992		1992Sa03 (continued)		<u>d)</u>			
γ ⁽¹⁸¹ Pt) (continued)												
E_{γ}^{\dagger}	I_{γ} ‡	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult.	δ	α^{C}	Comments			
1920.9 <i>f</i> 3	10.0 15	2015.41	(1/2 ⁻ ,3/2,5/2 ⁻)	93.93	5/2-							
1928.5 ^{<i>f</i>} 3	14.0 21	2095.07	(5/2 ⁻)	166.64	$(5/2)^{-}$							
1935.9 ^d 1	69 ^d 9	2015.41	$(1/2^-, 3/2, 5/2^-)$	79.40	$3/2^{-}$							
1935.9 ^{<i>d</i> f}	62 ^{<i>d</i>} 9	2101.83	(1/2,3/2,5/2) ⁻	166.64	(5/2)-				This placement of $E\gamma$ =1935.9 <i>I</i> is shown as uncertain in the level diagram, but definite in γ -table. The placement is supported by possible 1936 γ -50 γ coin; however, $E\gamma$ =1935.19 <i>I6</i> is expected.			
^x 1941.9 <i>3</i>	10.0 15											
x1950.8 3	9.6 14	2126.65	$(1/2) 2/2 5/2)^{-}$	166 64	$(5/2)^{-}$	E2		0.00156	a=0.00156, $a(K)=0.00120$, $a(I)=0.00021$			
1900.0 1	110 17	2120.03	(1/2, 5/2, 5/2)	100.04	(3/2)	E2		0.00130	$\alpha = 0.00150; \alpha(K) = 0.00150; \alpha(L) = 0.00021$ Mult.: $\alpha(K) \exp[=0.0010, 3]$.			
1965.9 ^{<i>f</i>} 1	210 32	2082.72	$(3/2^{-}, 5/2^{-})$	116.66	$(7/2)^{-}$							
1968.4 <i>^f</i> 1	120 18	2085.12	(5/2)-	116.66	$(7/2)^{-}$							
1970.6 <i>1</i>	86 13	2137.40	$(1/2^-, 3/2, 5/2^-)$	166.64	$(5/2)^{-}$							
1973.8 3	32 5	2053.21	$(3/2^{-}, 5/2^{-})$	79.40	3/2-							
x1982.5 <i>1</i>	76 11	2005 12	(5/0)-	02.02	5/2-							
2001.2.1	140 21 83 12	2085.12	(5/2) $(5/2^{-})$	93.93	5/2 5/2 ⁻							
2005.6 1	180 27	2085.12	$(5/2)^{-}$	79.40	$3/2^{-}$	E2		0.00149	α =0.00149; α (K)=0.00125; α (L)=0.00020			
									Mult.: α (K)exp=0.0010 4.			
2015.4 1	86 13	2015.41	$(1/2^{-},3/2,5/2^{-})$	0.0	$\frac{1}{2^{-}}$	$E_2(+M_1)$	>1.0		Additional information 7			
2022.4 1	230 38	2101.65	(1/2, 3/2, 3/2)	79.40	5/2	$E2(\pm W11)$	≥1.9		Mult.: $\alpha(K) \exp[0.0011] 3$.			
2028.3 ^{<i>f</i>} 3	23 3	2122.52	$(<7/2)^{-}$	93.93	$5/2^{-}$							
2032.6 ^{<i>f</i>} 3	25 4	2126.65	$(1/2,3/2,5/2)^{-}$	93.93	5/2-							
2036.0 ^{<i>f</i>} 3	49 7	2153.5	$(5/2^-, 7/2^-)$	116.66	$(7/2)^{-}$							
2043.1 1	100 15	2122.52	$(\le 7/2)^{-}$	79.40	$3/2^{-}$	E2,M1			Mult.: α (K)exp=0.0014 6.			
2052.6 ^f 3	21 3	2053.21	(3/2 ⁻ ,5/2 ⁻)	0.0	$1/2^{-}$							
2058.1 <i>I</i>	52 8 33 5	2137.40	$(1/2^-, 3/2, 5/2^-)$	79.40	3/2-							
2072.75	22 J 23 3	2153 5	$(5/2^{-} 7/2^{-})$	70.40	3/2-							
2073.5° 3 2101 8 f 1	23 3 56 8	2105.5	(3/2, 7/2) $(1/2, 3/2, 5/2)^{-1}$	0.0	$\frac{3}{2}$							
x2117.7 1	117 18	2101.00	(1/2,0/2,0/2)	0.0	1/2							
2126.5 ^{<i>f</i>} 1	110 17	2126.65	$(1/2, 3/2, 5/2)^{-}$	0.0	$1/2^{-}$	E2(+M1)	≥0.4		Additional information 8.			
2						. /			Mult.: α (K)exp=0.0012 5.			
2136.7 ^{<i>f</i>} 3	12.0 18	2137.40	$(1/2^-, 3/2, 5/2^-)$	0.0	$1/2^{-}$							
^x 2140.2 ^{&} 3	6.2 9											

12

 $^{181}_{78}\text{Pt}_{103}\text{-}12$

L

 $^{181}_{78}\text{Pt}_{103}\text{-}12$

¹⁸¹Au ε decay **1992Sa03** (continued)

$\gamma(^{181}\text{Pt})$ (continued)

[†] $\Delta E_{\gamma} \approx 0.1$ keV if $E_{\gamma} < 500$ and $I_{\gamma} > 20$ or if $E_{\gamma} > 500$ and $I_{\gamma} > 50$; $\Delta E_{\gamma} \le 0.3$ keV otherwise. Note that 1992Sa03 observed an additional 94 transitions which they did not list because those transitions were so weak (they constitute 3.7% of the total observed I_{γ}).

[‡] Uncertainty≈15%.

[#] From coincidence data; ¹⁸¹Pt ε decay contaminant present in singles γ spectrum.

[@] Doublet.

[&] Assignment of transition to ¹⁸¹Au decay is not certain.

^a Placed by 1991Fi01; for this reason, placement is indicated here as tentative.

^b Intensity balance at the 117 level (to which no ε branch is expected) precludes mult(23γ)=E1 which, in turn, rules out mult(50γ)=E1. The upper limit on I(γ +ce)(15γ) rules out any significant E2 component for the 23 γ , and this implies mult(50γ) is also M1 with no significant E2 component; similarly, mult(73γ) cannot be pure E2. The evaluator, therefore, assigns (M1) to 23 γ , 50 γ and 73 γ .

^c Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^d Multiply placed with undivided intensity.

^e Multiply placed with intensity suitably divided.

^f Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

¹⁸¹Au ε decay 1992Sa03

Decay Scheme

Intensities: Relative $I_{(\gamma+ce)}$

Legend

 $\frac{5/2^{-}}{3/2^{-}}$

¹⁸¹₇₈Pt₁₀₃

Decay Scheme (continued)

 $^{181}_{78}{\rm Pt}_{103}$

 $^{181}_{78}{\rm Pt}_{103}$

Decay Scheme (continued)

Intensities: Relative $I_{(\gamma+ce)}$ & Multiply placed: undivided intensity given

$I_{\gamma} > 10\% \times I_{\gamma}^{max}$ γ Decay (Uncertain	n)						(3/2 ⁻) 0.0	13.7 s <i>14</i>
						$\%\varepsilon + \%\beta^+=97.3$	$Q_{\varepsilon}=6503\ 25$	
							$^{181}_{79}$ Au ₁₀₂	
							// 102	
	۸ 5.							
$(1/2^{-} 3/2 5/2^{-})$	19 19 19 19 19 19 19 19 19 19 19 19 19 1					1456 30		
$\frac{(1/2^{-},3/2,5/2^{-})}{(1/2,3/2,5/2^{-})}$	- 28.8			2-2		1417 80		
(1/2,3/2,5/2 ⁻)		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		1400.68		
(<7/2)			\$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 <u> </u>				
$\frac{(3/2^-, 5/2^-)}{(1/2)^-}$			111222 11122	- <u>0</u> - <u>1</u> - <u>1</u> - <u>2</u>		1326.36		
(1/2)			,	\$`````````````````````````````````````		1309.49		
(5/2,7/2,9/2)-						1256.1		
		┝┝┝┝┊┊┝				1217.22		
					8- × c	/		
					no so	1087.33		
(5/2+,7/2)					1, 6 4 5, 1	1050.44		
(1/2 ⁻ ,3/2 ⁻)		╡╾┝╴┍╴┝╴┝╴┆╸┆╸╽╸		┥╾ <u>┥╼╷</u> ╼╷╼╷╼╷╼╷╼╷		<u> </u>		
						1006.2		
$\frac{+}{(3/2,5/2,7/2)^+}$	─ <u></u> ┤ <u></u> ┤ <u></u> ┤		-	_ <u> </u> _! !!!		965.67		
(012,012,112)						945.47		
$(5/2^+, 7/2, 9/2^-)$						821.86		
$\frac{(c/2^{-})}{(5/2^{-})}$			╶┝╼┝╼┝╼┝╼┝	▼ 		783.76		
(0/2)			╶┝╼┝╾┸╌┆╼┝╼┝╸			185.10		
1/2-,3/2-		╷╷╸╸				729.53		
$(1/2, 3/2, 5/2^{-})$						661 70		
(5/2)+	- - _i - ı	│╾┝╸┖╴╼┝╴┚╸╟╴╢╴╢╴ ┥╾┝╍╍╍┝╍┚╼┖╼╢	·			650.55		
(5/2)-						597.64		
(0/2)			- T			577.04		
			i					
$(7/2)^+$						287 16		
7/2-				iii		278.11		
$\frac{(9/2)^+}{(7/2)^-}$						276.02	0.16 μs <i>14</i>	
(112)						256.36		
(5/2)-						166 64		
(7/2)-					•	116 66		
5/2-		╞╞══╌┝╶╦╴──	<u></u> ¦	¥		93.93	>300 ns	
3/2-			<u> </u> #			79.40		
			 			/		
1/2-	• •	+ +	İ		t	0.0		

 $^{181}_{78}{\rm Pt}_{103}$

Decay Scheme (continued)

 $^{181}_{78}{\rm Pt}_{103}$

 $^{181}_{78}{\rm Pt}_{103}$

Decay Scheme (continued)

 $^{181}_{78}{\rm Pt}_{103}$

 $^{181}_{78}\mathrm{Pt}_{103}$