185 Hg α decay (49.1 s) 1976GrZC

Type Author Citation Literature Cutoff Date
Full Evaluation S. -c. Wu NDS 106, 367 (2005)

History

Citation Literature Cutoff Date
31-Aug-2005

Parent: ¹⁸⁵Hg: E=0.0; $J^{\pi}=1/2^{-}$; $T_{1/2}=49.1$ s 10; $Q(\alpha)=5774$ 5; % α decay=6 1

¹⁸⁵Hg-%α decay: 0.055 7 (1970Ha18) from absolute α, K x ray, and γ^{\pm} counting. No correction for internal conversion electrons was made, which may have increased this value. However, an upper limit of 0.07 can be set by requiring HF≥1 for the 5653α. Branching was not corrected for a possible contribution to the K x-ray intensity due to 46% ε decay from ¹⁸⁵Hg(21 s) reported by 1982Bo27. The evaluator adopts %α=6 *1*.

1976GrZC: Source prepared in ISOLDE II at CERN; Ge detector for X-ray and γ' s; surface barrier detector for α' s; measured $E\alpha$, $I\alpha$, $\alpha\gamma$ -coin.

Others: 1953Ra02, 1963Ka17, 1968De01, 1970Ha18, 1978Ha30, 1970Ma24, 1977Ij01, 1979Ha10, 1980ToZZ, 2002An15.

The level scheme has been analyzed by evaluator on the basis of the systematics of the 1/2[521] rotational band, and on reported coincidence data.

¹⁸¹Pt Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments	
0.0 79 [#]	1/2-	52.0 s 22	$T_{1/2}$: from Adopted Levels.	
, ,	3/2-			
94 [#]	5/2-		E(level): 86 7, based on $E\alpha$.	

[†] Based on Ey.

α radiations

Εα	E(level)	$I\alpha^{\dagger \#}$	HF [‡]	Comments
5569 5	94	4.0 3	10.2 20	Eα: from 1980ToZZ (also observed by 1976To06). Other values: 5575 15 (1970Ha18),
5653 5	0.0	96.0 <i>3</i>	1.15 <i>21</i>	5560 (1976GrZC). Eα: from 1980ToZZ (also observed by 1976To06, 2002An15). Other data: 5600 100 (1953Ra02), 5640 50 (1963Ka17), 5652 15 (1970Ha18), 5652 (1976GrZC), 5630 20 (1970Ma24), 5586 28 (1968De01), 1977Ij01.

[†] Deduced by evaluator from $I\alpha(g.s.)/I\alpha(94)=24\ 2\ (1970Ha18)$. Other data: 25 (1976GrZC); $I\alpha(g.s.):I\alpha(94)=96\ 1:4\ 1\ (1980ToZZ)$. $\Delta I\alpha=0.3$ was calculated by evaluator using the error-propagation method of 1988Br07 and the constraint that $I\alpha(g.s.)+I\alpha(94)=100$.

 $\gamma(^{181}\text{Pt})$

$$\frac{E_{\gamma}^{\top}}{(15)} = \frac{E_{i}(\text{level})}{94} = \frac{J_{i}^{\pi}}{5/2^{-}} = \frac{E_{f}}{79} = \frac{J_{f}^{\pi}}{3/2^{-}} = \frac{\text{Mult.}^{\ddagger}}{[M1]}$$

$$\frac{\text{Comments}}{\text{Transition not observed, but } I(\gamma + \text{ce}) \text{ is expected to be strong, based on the decay pattern systematics of the } 1/2[521] \text{ rotational band. Ey is rounded-off value from the Adopted Gammas data set.}$$

[‡] From Adopted Levels.

[#] The expected energy pattern for the 1/2[521] rotational band is for the $3/2^-$ and $5/2^-$ members to lie close together, significantly above the $1/2^-$ bandhead, decoupling parameter a=+0.79; thus, the 15-keV $3/2^-$ level option proposed by 1976GrZC seems unlikely.

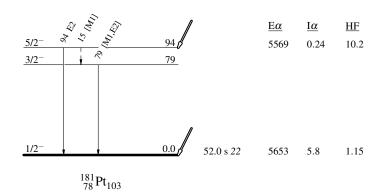
 $^{^{\}ddagger}$ If r_0 =1.508 (based on r_0 (¹⁸⁰Pt) and r_0 (¹⁸²Pt) from 1998Ak04).

[#] For absolute intensity per 100 decays, multiply by 0.06 1.

185 Hg α decay (49.1 s) 1976GrZC (continued)

$\gamma(^{181}\text{Pt})$ (continued)

$$\frac{E_{\gamma}^{\dagger}}{79}$$
 $\frac{E_{i}(\text{level})}{79}$ $\frac{J_{i}^{\pi}}{3/2^{-}}$ $\frac{E_{f}}{0.0}$ $\frac{J_{f}^{\pi}}{1/2^{-}}$ $\frac{\text{Mult.}^{\ddagger}}{[\text{M1,E2}]}$ $\frac{94}{94}$ $\frac{5}{2^{-}}$ $\frac{94}{0.0}$ $\frac{1}{2^{-}}$ $\frac{1}{2^{-}}$ $\frac{1}{2^{-}}$


 $^{^{\}dagger}$ From 1976GrZC; uncertainty unstated by authors, but E γ values match rounded-off values from the Adopted Gammas data set.

[‡] From adopted gammas.

185 Hg α decay (49.1 s) 1976GrZC

Legend

Decay Scheme

