Adopted Levels, Gammas

					History				
		Т	уре	Author	Citation	L	iterature Cutoff Date		
		Full E	valuation	Sc. Wu	NDS 106,367 (200	05)	31-Aug-2005		
$Q(\beta^{-}) = -7862 \ 18; \ S(n) = 8482 \ 20; \ S(p) = 2.36 \times 10^{3} \ 3; \ Q(\alpha) = 6284 \ 5 2012 Wa38$ Note: Current evaluation has used the following Q record -7860 18 8488 21 2354 26 6284 4 2003 Au03. For isotope shift data, see 1976Bo09 and 1986U102.									
					¹⁸¹ Hg Levels				
				Cross	Reference (XREF) F	Flags			
				A 1 B 1 C 1	⁸⁵ Pb α decay (6.3 s ⁸⁵ Pb α decay (4.3 s ⁴⁴ Sm(⁴⁰ Ar,3nγ)	5) 5)			
E(level) [‡]	J^{π}	T _{1/2}	XREF			С	omments		
0.0#	$1/2^{-}$	3.6 ^c s 1	AC	$\%\varepsilon + \%\beta^+ = 73$	3 2: %α=27 2: %εp	=0.013	3: $\% \epsilon \alpha = 9 \times 10^{-6} 6$		
0.0	1/2	5.0 51		$\mu = +0.50717$ $\mu = +0.50717$ $\mu: NMR of r$ $(2001StZZ)$ $\% \alpha: weighte and 26 4 (\% \epsilon p: from Iu \% \epsilon \alpha: based Jπ: J from nu systematic \Delta < r^2 > (198-1)< r^2 > 1/2 = 5.42nuclides (2$	Z_1 (a) Z_2 (b) Z_2 (c) Z_3 (c) Z_4 (c) Z_5 (c) Z_6 (c) Z_7	optical j diamag 2004An value: 2 (1971Hc if $\Re \alpha =$: ected op g odd-A 6UI02). pased on	bumping with beta asymmetry detection netic correction included. (07), 36 4 (1982HeZM), 23 4 (1979Ha10) 7 (1971Ho07). (07), assuming $\%\alpha$ =27 2. 26 4 (1975Ho02). tical pumping (1976Bo09); π based on Hg and Pb isotopes.		
0.0+x ^{&} 0.0+y	(7/2 ⁻) 13/2 ⁺		C BC	J ^π : Populated Probably the isotopes.	d by α -decay from the oblate deformed i_{13}	the 13/2 _{3/2} isom	⁺ state of ¹⁸⁵ Pb with HF=1.7 9. eric state known in A \geq 185 odd-A Hg		
64 75.2+y ^b 13 80.5 [#] 10 90.7+x [@] 13 248.4+x ^{&} 10 263.9 [#] 15	3/2 ⁻ (11/2 ⁺) (5/2 ⁻) (9/2 ⁻) (11/2 ⁻) (9/2 ⁻)		A C C C C C	J ^π : populatec J ^π : populatec	d by α -decay from the decay from	the 13/2 the 3/2 ⁻	⁺ state of ¹⁸⁵ Pb with HF=1.7 9. state of ¹⁸⁵ Pb with HF=11 6.		
269 315.7+y ^b 8 400.1+x [@] 13 416.8+y ^a 8 535.2 [#] 18 575.7+x ^{&} 13 656.3+y ^b 10 766.3+x [@] 14 794.2+y ^a 11 889.7 [#] 20	$3/2^{-}$ $(15/2^{+})$ $(13/2^{-})$ $(17/2^{+})$ $(13/2^{-})$ $(15/2^{-})$ $(19/2^{+})$ $(17/2^{-})$ $(21/2^{+})$ $(17/2^{-})$		A C C C C C C C C C C C	J ^π : populateo	d by α -decay from the decay from	he 3/2 [−]	state of ¹⁸⁵ Pb with HF=1.5 8.		

Adopted Levels, Gammas (continued)

E(level) [‡]	J^{π}	XREF	E(level) [‡]	J^{π}	XREF	E(level) [‡]	J^{π}	XREF
979.5+x ^{&} 15	(19/2-)	С	1587.9+y ^b 16	$(27/2^+)$	С	2240.6+x [@] 22	(29/2-)	С
1083.9+y ^b 12	$(23/2^+)$	С	1691.1+x [@] 20	$(25/2^{-})$	С	2323.2+y ^a 21	$(33/2^+)$	С
1198.6+x [@] 17	$(21/2^{-})$	С	1749.4+y ^a 18	$(29/2^+)$	С	2411 [#] 3	$(29/2^{-})$	С
1238.2+y ^a 15	$(25/2^+)$	С	1835.9 [#] 25	$(25/2^{-})$	С	2786.0+y? ^b 21	$(35/2^+)$	С
1325.3 [#] 23	$(21/2^{-})$	С	1987.0+x ^{&} 21	$(27/2^{-})$	С	2952.7+y? ^a 23	$(37/2^+)$	С
1453.6+x ^{&} 18	$(23/2^{-})$	С	2161.0+y ^b 19	$(31/2^+)$	С			

¹⁸¹Hg Levels (continued)

[†] Values given without comment are from (⁴⁰Ar,3nγ), based on unenumerated DCO ratios, level systematics for heavier Hg isotopes and deduced band structure.

[‡] From least-squares adjustment of $E\gamma$, allowing $\Delta E_{\gamma}=1$ keV for all transitions, except as noted.

[#] Band(A): 1/2[521] band, $\alpha = +1/2$. The unfavored-signature partner of this band was not observed in (HI,xn γ); large signature splitting is expected for the 1/2[521] orbital. Decoupled band built on prolate strongly deformed g.s.

^(a) Band(B): 5/2[512] band, $\alpha = +1/2$. No signature splitting and very gradual alignment (as for 5/2[512] bands in N=101 isotones, where bandheads lie at 100-150 keV); B(M1)/B(E2) for $\Delta J=1$ and $\Delta J=2$ inband transitions from levels in this band indicate assignment of 5/2[512] orbital rather than the 7/2[514] orbital known in heavier Hg isotopes.

[&] Band(b): 5/2[512] band, $\alpha = -1/2$. No signature splitting and very gradual alignment (as for 5/2[512] bands in N=101 isotones, where bandheads lie at 100-150 keV); B(M1)/B(E2) for $\Delta J=1$ and $\Delta J=2$ inband transitions from levels in this band indicate assignment of 5/2[512] orbital rather than the 7/2[514] orbital known in heavier Hg isotopes.

^{*a*} Band(C): 7/2[633] band, $\alpha = +1/2$. Probably analogous to mixed ($\nu i_{13/2}$) bands in ¹⁸³Hg, ¹⁸⁵Hg and ¹⁸⁷Hg except that, here, the 7/2[633] rather than the 9/2[624] orbital is the predominant one. Prolate deformed structure.

^b Band(c): 7/2[633] band, $\alpha = -1/2$. Probably analogous to mixed ($\nu i_{13/2}$) bands in ¹⁸³Hg, ¹⁸⁵Hg and ¹⁸⁷Hg except that, here, the 7/2[633] rather than the 9/2[624] orbital is the predominant one. Prolate deformed structure.

^c From 6006α (t) (1979Ha10). Note that the flag attributing this datum to 1970Ha18 in table 1 of 1979Ha10 almost certainly belongs with the datum for I(6006α)/I α (total). Other data: 3.6 s 3 (1969Ha03), 3.6 s 3 (1970Ha18), 3.2 s 7 (1982HeZM), 3.3 s 4 (1979Ha10), 3.4 s 3 (for each of three lines, 1979Ha10). The weighted average of all data is 3.54 s 8, and the unweighted average is 3.44 s 5.

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	Comments
64	3/2-	(64)	0.0	$1/2^{-}$	[E2]	
80.5	$(5/2^{-})$	80.5 [#]	0.0	$1/2^{-}$		
248.4+x	$(11/2^{-})$	157.7	90.7+x	(9/2-)		
		248.4 [‡]	0.0+x	$(7/2^{-})$		
263.9	$(9/2^{-})$	183.4	80.5	$(5/2^{-})$		
269	3/2-	205 1	64	3/2-	M1	Mult.: $\alpha(K)=1.2 \ 3$ if the observed K X-rays result from the 205 keV γ 's only(2002An15).
		269 1	0.0	1/2-	M1	Mult.: $\alpha(K)=0.65$ 15 if the observed K X-rays result from the 269 keV γ 's only(2002An15).
315.7+y	$(15/2^+)$	240.5	75.2+y	$(11/2^+)$		······································
		315.7	0.0+y	$13/2^{+}$		
400.1+x	$(13/2^{-})$	151.7	248.4+x	$(11/2^{-})$		
		309.4 [‡]	90.7+x	$(9/2^{-})$		
416.8+y	$(17/2^+)$	101.1	315.7+y	$(15/2^+)$		
		416.8 [‡]	0.0+y	$13/2^{+}$		
535.2	$(13/2^{-})$	271.3	263.9	$(9/2^{-})$		
575.7+x	$(15/2^{-})$	175.6	400.1+x	$(13/2^{-})$		
		327.3 [‡]	248.4+x	$(11/2^{-})$		

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}
656.3+y	$(19/2^+)$	239.5	416.8+y (17/2 ⁺)	1325.3	$(21/2^{-})$	435.6	889.7	(17/2-)
766.3+x	(17/2 ⁻)	340.6 [‡] 190.6	315.7+y (15/2 ⁺) 575.7+x (15/2 ⁻)	1453.6+x 1587.9+y	(23/2 ⁻) (27/2 ⁺)	474.1 504.0	979.5+x 1083.9+y	(19/2 ⁻) (23/2 ⁺)
794.2+y	$(21/2^+)$	366.2 [‡] 137.9	400.1+x (13/2 ⁻) 656.3+y (19/2 ⁺)	1691.1+x 1749.4+y	(25/2 ⁻) (29/2 ⁺)	492.5 511.2	1198.6+x 1238.2+y	(21/2 ⁻) (25/2 ⁺)
889.7 979.5+x	(17/2 ⁻) (19/2 ⁻)	377.4 [‡] 354.5 213.2	416.8+y (17/2 ⁺) 535.2 (13/2 ⁻) 766.3+x (17/2 ⁻)	1835.9 1987.0+x 2161.0+y	(25/2 ⁻) (27/2 ⁻) (31/2 ⁺)	510.6 533.4 573.1	1325.3 1453.6+x 1587.9+y	(21/2 ⁻) (23/2 ⁻) (27/2 ⁺)
1083.9+y	(23/2+)	403.8 [‡] 289.7 427.6 [‡]	575.7+x $(15/2^{-})$ 794.2+y $(21/2^{+})$ 656.2+y $(10/2^{+})$	2240.6+x 2323.2+y	$(29/2^{-})$ $(33/2^{+})$ $(20/2^{-})$	549.5 573.8	1691.1+x 1749.4+y	$(25/2^{-})$ $(29/2^{+})$ $(25/2^{-})$
1198.6+x 1238.2+y	(21/2 ⁻) (25/2 ⁺)	432.3 444.0	$\begin{array}{r} \text{030.3+y} & (19/2^{-}) \\ \text{766.3+x} & (17/2^{-}) \\ \text{794.2+y} & (21/2^{+}) \end{array}$	2411 2786.0+y? 2952.7+y?	$(29/2^{+})$ $(35/2^{+})$ $(37/2^{+})$	625.0 [@] 629.5 [@]	2161.0+y 2323.2+y	$(23/2^{+})$ $(31/2^{+})$ $(33/2^{+})$

$\gamma(^{181}\text{Hg})$ (continued)

[†] From (⁴⁰Ar, $3n\gamma$); uncertainties unstated by authors. [‡] Based on width of transition drawn in the level scheme of 1997Va17, this is the stronger of the pair of γ 's deexciting the parent level. [#] Includes contribution from Hg K β x ray. [@] Placement of transition in the level scheme is uncertain.

	Adopted Levels, Gammas	nd
	Level Scheme	
	► γ	Decay (Uncertain)
<u>(37/2⁺)</u>	8 ²	2952.7+y
(35/2 ⁺)		2786.0+y
(29/2 ⁻)		2411
(33/2+)		2323.2+y
(29/2 ⁻)		2240.6+x
(31/2+)		2161.0+y
(27/2 ⁻)		1987.0+x_
(25/2 ⁻)		1835.9
(29/2+)		1749.4+y
(25/2-)		1691.1+x
(27/2+)	↓ <i>R</i>	1587.9+y
(23/2 ⁻)		1453.6+x
$(21/2^{-})$		1325.3
(25/2+)		1238.2+y
(21/2 ⁻)		1198.6+x
(23/2+)	↓ \$ ⁷ \$ ⁷	1083.9+y
(19/2 ⁻)		979 5+x
$(17/2^{-})$		889.7
(21/2+)		794 2+v
(17/2 ⁻)		766.3+x
(19/2+)		656.3+y
(15/2-)		575.7+x
(13/2 ⁻)		535.2
$\frac{(17/2^+)}{(12/2^-)}$		416.8+y
$\frac{(13/2)}{(15/2^+)}$		<u>400.1+x</u> 315.7+v
(9/2-)		263.9
(11/2 ⁻)	· · · · · · · · · · · · · · · · · · ·	248.4+x
(9/2-)		90.7+x
$\frac{(11/2^+)}{12/2^+}$		75.2+y
13/2	¥ ¥	0.0+y
1/2-		0.0 3.6

 $^{181}_{80} Hg_{101}$

Adopted Levels, Gammas

Level Scheme (continued)

 $--- \rightarrow \gamma$ Decay (Uncertain)

Legend

 $^{181}_{80} Hg_{101}$

Adopted Levels, Gammas

 $^{181}_{80} Hg_{101}$