¹⁸⁵Pb α decay (6.3 s) 2002An15,1980Sc09

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Sc. Wu	NDS 106, 367 (2005)	31-Aug-2005

Parent: ¹⁸⁵Pb: E=0.0; $J^{\pi}=3/2^{-}$; $T_{1/2}=6.3 \text{ s } 4$; $Q(\alpha)=6695 5$; $\%\alpha$ decay=34 25 ¹⁸⁵Pb- $\%\alpha$ decay: from the recoil- α (¹⁸⁹Po)- α (¹⁸⁵Pb) correlations (2005Va04).

Others: 1987To09, 1982HeZM, 1975Ca06.

2005Va04: ¹⁸⁵Pb from ¹⁸⁹Po(α); activity of ¹⁸⁹Po produced by ¹⁴²Nd(⁵²Cr,5n) at 5.27 MeV/A; ¹⁴²Nd(⁵⁰Cr,3n) at 5.04 MeV/A; 99.8% enriched $^{142}Nd_2F_3$ target; Detectors: velocity filter (SHIP), 16-strip position sensitive silicon detector for α -particles; 6 silicon detectors for conversion electrons; four-fold segmented Clover detector for γ 's. measured E(α), I(α), E(γ), α - γ -coin., α -e coin., α_{tot} .

2002An15: α activity produced by 1.4 GeV protons on UC_x target; Resonance ionization laser ion source; on-line mass separator; measured E α , E γ , $\alpha\gamma$ -coin, T_{1/2}. ¹⁸¹Hg deduced levels, possible J^{π} .

1980Sc09: α activity produced by ¹⁵⁰Sm(⁴⁰Ca,5n) (1975Ca06), ¹⁴²Nd(⁴⁸Ti,5n) at E=185 MeV (1980Sc09), Pd(⁸²Kr,X) at E=4.2, 4.4 MeV/nucleon (1982HeZM), ¹⁴⁷Sm(⁴⁰Ca,2n) at 194 MeV (1987To09).

¹⁸¹Hg Levels

E(level)	J^{π}	T _{1/2}	Comments
0.0	1/2 ⁻	3.6 s 1	J ^{π} , T _{1/2} : from Adopted Levels.
64	3/2 ⁻		J ^{π} : 4p6h state; populated by α -decay from the 3/2 ⁻ state of ¹⁸⁵ Pb with HF=11 6.
269	3/2 ⁻		J ^{π} : 0p2h state; populated by α -decay from the 3/2 ⁻ state of ¹⁸⁵ Pb with HF=1.5 8.

α radiations

$E\alpha^{\dagger}$	E(level)	$I\alpha^{\dagger \#}$	HF^{\ddagger}	Comments
6288 5	269	56 2	2.5 19	E <i>α</i> : others: 6290 15 (1980Sc09).
6486 5	64	44 2	19 15	$I\alpha$: other: $I\alpha$ =40 6 relative to $I\alpha$ (6485+6290) (1980Sc09). Eα: others: 6485 15 (1980Sc09); 6480 20 (1975Ca06).
6548 [@]	0.0	<1.4	>1100	12.000010 relative to $10(000010200)$ (1000000).

[†] From 2002An15 and 2005Va04. [‡] If $r_0=1.503 \ 17$ (based on $r_0(^{180}\text{Hg})=1.505 \ 13$ and $r_0(^{182}\text{Hg})=1.50 \ 2$ from 1998Ak04). [#] For absolute intensity per 100 decays, multiply by 0.34 25.

[@] Existence of this branch is questionable.

$\gamma(^{181}\text{Hg})$

E_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult.	Comments
(64)	64	3/2-	0.0	1/2-	[E2]	
205 1	269	3/2-	64	3/2-	M1	Mult.: $\alpha(K)\exp=1.2 \ 3$ if the observed K x-rays result from the 205 keV γ 's only(2002An15).
269 1	269	3/2-	0.0	1/2-	M1	Mult.: $\alpha(K)\exp=0.65$ 15 if the observed K x-rays result from the 269 keV γ 's only(2002An15).

[†] From 2002An15 and 2005Va04.

¹⁸⁵Pb α decay (6.3 s) 2002An15,1980Sc09

Decay Scheme

 $^{181}_{80} Hg_{101}$