¹⁸¹Hg ε decay 1992Sa03 | | | History | | |-----------------|--------|---------------------|------------------------| | Type | Author | Citation | Literature Cutoff Date | | Full Evaluation | Sc. Wu | NDS 106, 367 (2005) | 31-Aug-2005 | Parent: ¹⁸¹Hg: E=0.0; $J^{\pi}=1/2^{(-)}$; $T_{1/2}=3.6$ s 1; $Q(\varepsilon)=7210$ 25; $\%\varepsilon+\%\beta^+$ decay=69 5 ## $\gamma(^{181}Au)$ 1992Sa03 do not construct a level scheme. The sources of these γ' s are not clearly established. They may arise from 181 Hg ε decay or 181 Hg α decay or from subsequent decays of the 181 Au and 177 Pt daughters of those decays (e.g., 177 Ir). These transitions are also absent in 181 Au ε decay. | $\underline{\hspace{1cm}}$ E_{γ} | $\underline{\hspace{1cm}}$ I_{γ} | Comments | |---|---|--| | ^x 30.8 2 | 13.0 20 | Additional information 1. | | $x42.5^{\ddagger} 2$ | 76 11 | Additional information 2. | | ^x 147.8 2 | 300 [†] 45 | I_{γ} : may also include a contribution from a γ in ¹⁷⁷ Ir following ¹⁷⁷ Pt ε decay. | | ^x 157.4 [‡] 2 | 16.0 24 | Additional information 3. | | ^x 165.8 2 | 16.0 24 | | | ^x 180.1 2 | ≈16 | | | ^x 185.0 2 | ≈35 | | | ^x 194.7 2 | 10.0 <i>15</i> | | | ^x 210.9 2 | 19 <i>3</i> | | | ^x 214.1 2 | ≈13 [†] | | | ^x 217.9 2 | 7.3 11 | | | $x^{223.2}$ 2 | 32 5 | | | $x^{265.4}$ 2 | 29 4 | | | x281.0 2 | 11.0 <i>17</i> | | | x330.9 2 | 21 3 | | | x385.6 2 | 18 <i>3</i> | | | ^x 1202.2 2 | 15.0 <i>23</i> | | | ^x 1394.4 2 | 18 <i>3</i> | | | ^x 1776.9 2 | 27 4 | | | ^x 1986.7 2 | 50 8 | | [†] Probably a transition in 177 Pt (following α decay of 181 Hg). ¹⁸¹Hg-%ε+%β⁺ decay: based on %α=31 5 (weighted average of %α=36 4 (1982HeZM, from parent-daughter α correlation) and %α=26 4 (1975Ho02)). ¹⁹⁹²Sa03: 181 Hg sources from E(p)=200 MeV or E(3 He)=270 MeV bombardment of a Pt-B alloy target; on-line separation; HPGe detectors; measured E γ (Δ E $_{\gamma}$ <0.2 keV), I γ (Δ I $_{\gamma}$ <15%). $^{^{\}ddagger}$ Ey is close that for a known transition in 177 Ir. $^{^{}x}$ γ ray not placed in level scheme.