¹⁸¹Hg ε decay 1992Sa03

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Sc. Wu	NDS 106, 367 (2005)	31-Aug-2005

Parent: ¹⁸¹Hg: E=0.0; $J^{\pi}=1/2^{(-)}$; $T_{1/2}=3.6$ s 1; $Q(\varepsilon)=7210$ 25; $\%\varepsilon+\%\beta^+$ decay=69 5

$\gamma(^{181}Au)$

1992Sa03 do not construct a level scheme. The sources of these γ' s are not clearly established. They may arise from 181 Hg ε decay or 181 Hg α decay or from subsequent decays of the 181 Au and 177 Pt daughters of those decays (e.g., 177 Ir). These transitions are also absent in 181 Au ε decay.

$\underline{\hspace{1cm}}$ E_{γ}	$\underline{\hspace{1cm}}$ I_{γ}	Comments
^x 30.8 2	13.0 20	Additional information 1.
$x42.5^{\ddagger} 2$	76 11	Additional information 2.
^x 147.8 2	300 [†] 45	I_{γ} : may also include a contribution from a γ in ¹⁷⁷ Ir following ¹⁷⁷ Pt ε decay.
^x 157.4 [‡] 2	16.0 24	Additional information 3.
^x 165.8 2	16.0 24	
^x 180.1 2	≈16	
^x 185.0 2	≈35	
^x 194.7 2	10.0 <i>15</i>	
^x 210.9 2	19 <i>3</i>	
^x 214.1 2	≈13 [†]	
^x 217.9 2	7.3 11	
$x^{223.2}$ 2	32 5	
$x^{265.4}$ 2	29 4	
x281.0 2	11.0 <i>17</i>	
x330.9 2	21 3	
x385.6 2	18 <i>3</i>	
^x 1202.2 2	15.0 <i>23</i>	
^x 1394.4 2	18 <i>3</i>	
^x 1776.9 2	27 4	
^x 1986.7 2	50 8	

[†] Probably a transition in 177 Pt (following α decay of 181 Hg).

¹⁸¹Hg-%ε+%β⁺ decay: based on %α=31 5 (weighted average of %α=36 4 (1982HeZM, from parent-daughter α correlation) and %α=26 4 (1975Ho02)).

¹⁹⁹²Sa03: 181 Hg sources from E(p)=200 MeV or E(3 He)=270 MeV bombardment of a Pt-B alloy target; on-line separation; HPGe detectors; measured E γ (Δ E $_{\gamma}$ <0.2 keV), I γ (Δ I $_{\gamma}$ <15%).

 $^{^{\}ddagger}$ Ey is close that for a known transition in 177 Ir.

 $^{^{}x}$ γ ray not placed in level scheme.