¹⁸⁵Tl α decay (1.93 s) 1980Sc09,1976To06,1980ToZZ

Type Author Citation Literature Cutoff Date

Full Evaluation S. -c. Wu NDS 106,367 (2005) 31-Aug-2005

Parent: ¹⁸⁵Tl: E=454.8 *15*; $J^{\pi}=(9/2^{-})$; $T_{1/2}=1.93$ s 8; $Q(\alpha)=5690$ *50*; $\%\alpha$ decay=? Additional information 1.

Sources produced by mass separation of products following ¹⁴²Nd(⁴⁸Ti,p4n), E=5.1 MeV/nucleon (1980Sc09) or ¹⁸⁰W(¹⁴N,9n), E=168 MeV (1976To06).

¹⁸¹Au Levels

 $\frac{\text{E(level)}^{\dagger}}{0.0+x}$ Comments

35+x 6 E(level): from energy difference for α groups.

α radiations

If r_0 =1.505 20 (based on $r_0(^{180}\text{Pt})$ =1.512 11 and $r_0(^{182}\text{Hg})$ =1.50 2 from 1998Ak04), $T_{1/2}(^{185}\text{Tl})$ =1.93 s 8, $Q(\alpha)$ =5744 50 (based on $E\alpha$ =5976 4 to $^{181}\text{Au}(90\ 50)$ from $^{185}\text{Tl}(454.8\ 15)$), then HF(5976 α) between 1 and 4 implies $\%\alpha(^{185}\text{Tl})$ is of the order of 2 1. However, the $Q(\alpha)$ assumed here differs from $Q(\alpha)$ =5690 50 (2003Au03).

Εα	E(level)	$I\alpha^{\dagger}$	Comments
5976 <i>4</i>	35+x	82 4	Eα: value recommended in 1991Ry01; it is the weighted average of 5975 5 (1976To06), 5970 15 (1980Sc09), 5980 7 (unpublished datum cited in 1991Ry01). Ia: weighted average of 77 7 (1980Sc09) and 84 5 (1980ToZZ).
6010 5	0.0+x	18 4	Eα: value recommended in 1991Ry01; it is the weighted average of 6010 5 (1980ToZZ (this is the unassigned A=185 peak in 1976To06)), 6012 15 (1980Sc09). Iα: weighted average of 23 7 (1980Sc09) and 16 5 (1980ToZZ).

[†] From 1980ToZZ.

[†] It is unclear which levels in ¹⁸¹Au are fed by α decay from the 454-keV (9/2⁻) isomer of ¹⁸⁵Tl. Based on systematics of 9/2⁻ isomer α decays from heavier odd-A Tl isotopes, the strongest branch is expected to feed the lowest-energy 9/2⁻ level in ¹⁸¹Au. The level fed by the 6010 α (35 keV 6 below the latter level) could be the (3/2⁻) g.s. or an unobserved 5/2⁻ level which forms the g.s. in neighboring odd-A Au isotopes. In this case, the 35+x level would be the (9/2⁻) state.