¹⁸⁰Ta β⁻ decay **1980Ry01,1962Ga07**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	E. A. Mccutchan	NDS 126, 151 (2015)	1-Feb-2015

Parent: ¹⁸⁰Ta: E=0.0; $J^{\pi}=1^+$; $T_{1/2}=8.154$ h 6; $Q(\beta^-)=702$ 3; % β^- decay=15 3

1980Ry01: ¹⁸⁰Ta activity from Ta(n,2n) with E(n)=14 MeV. Measured E γ , I γ , β - γ , and γ -x-ray coincidences using Ge(Li) and LEPS detectors and a $4\pi\beta$ proportional counter.

1962Ga07: ¹⁸⁰Ta activity from ¹⁸⁰Hf(d,2n) with E(d)=11 MeV. Measured E γ , I γ , Ice, $\beta\gamma$ coincidences. Others: 1974HeYW, 1965Hu02, 1963De21, 1962Fo05, 1951Br87.

A total energy release of 105 keV 15 is calculated for this decay scheme using the RADLST code, in good agreement with the effective Q value of 105 keV 21.

 α : Additional information 1.

¹⁸⁰W Levels

E(level) [†]	Jπ‡	T _{1/2}	Comments
0.0	0^+ 2 ⁺	1.8×10 ¹⁸ y 2	$T_{1/2}$: from the Adopted Levels.
103.6 2		1.28 ns 5	$T_{1/2}$: weighted average of 1.33 ns 5 (1962Fo05), 1.19 ns 4 (1963De21), and 1.37 ns 3 (1965Hu02).

[†] From $E\gamma$.

[‡] From the Adopted Levels.

 β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
(598 3)	103.6	3.6 7	7.06 9	av Eβ=183.7 11
				E(decay): other: 610 15 (1962Ga07), \approx 600 (1951Br87).
(702 3)	0.0	10.4 <i>15</i>	6.84 7	av E β =220.8 11
				E(decay): other: 710 15 (1962Ga07), 705 15 (1951Br87).

[†] Absolute intensity per 100 decays.

$\gamma(^{180}{\rm W})$

Iv normalization: From decay scheme using $\Sigma(I(\gamma+ce)(93\gamma \text{ with }\varepsilon)+(I(\gamma+ce)(104\gamma \text{ with }\beta^{-})))=100\%$; I β (g.s.)/I β (104)=3.00 45 (1962Ga07); I ε (g.s.)/I ε (93)=2.36 9 (weighted average of 2.20 33 (1962Ga07) and 2.37 9 (1980Ry01)); I γ (104 γ)/I γ (93 γ)=0.180 35, Ge(Li) (1974HeYW); and theoretical conversion coefficients for the 104 and 93 g.s. transitions in ¹⁸⁰W and ¹⁸⁰Hf, respectively. I β (g.s.)/I β (103.6 keV)=4.22 31 measured by 1980Ry01 in a 4 π $\beta\gamma$ coin experiment "critically depends" on the detector's efficiency response to the β^{-} particle energy, and it may be less reliable than the value given by 1962Ga07.

E_{γ}^{\dagger}	Ι _γ ‡#	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	α	Comments
103.6 2	18.0 35	103.6	2+	0.0 0+	E2	3.39 6	$\alpha(K)=0.826 \ l2; \ \alpha(L)=1.94 \ 4; \ \alpha(M)=0.491 \ 9; \ \alpha(N)=0.1158 \ 20; \ \alpha(O)=0.0159 \ 3 \ \alpha(P)=6.53\times10^{-5} \ l0 \ Mult.: from \ \alpha(K)exp=0.92 \ 23 \ (1962Ga07).$

[†] From 1974HeYW.

[‡] From 1974HeYW, relative to $I\gamma(93.4\gamma \text{ with }\varepsilon)=100$.

[#] For absolute intensity per 100 decays, multiply by 0.048 10.

$\frac{^{180}}{^{180}}$ Ta β^- decay 1980Ry01,1962Ga07

Decay Scheme

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

