¹⁸⁰Os ε decay **1968Ha39,1968Ko10**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	E. A. Mccutchan	NDS 126, 151 (2015)	1-Feb-2015

Parent: ¹⁸⁰Os: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=21.5 \text{ min } 4$; $Q(\varepsilon)=1475 \ 27$; $\%\varepsilon+\%\beta^+$ decay=100.0

1968Ha39: ¹⁸⁰Os activity produced in ¹⁸²W(α ,6n), E(α)=75 MeV. Measured E(ce), I(ce) using permanent magnet spectrograph and x-ray film.

1968Ko10: ¹⁸⁰Os activity produced in ¹⁸⁴W(³He,7n), E(³He)=70 MeV. Measured E γ , I γ , $\gamma\gamma$, γ (t) using Si(Li) and NaI(Tl) detectors.

Other: 1967Ho12, observed no γ -rays with E γ >40 keV in the decay of ¹⁸⁰Os.

A total energy release of 700 keV 60 is calculated for the decay scheme using the RADLST code, compared with Q=1475 keV 27, indicating the decay scheme is incomplete.

 α : Additional information 1.

¹⁸⁰Re Levels

Level scheme is that proposed by 1968Ha39 and should be considered tentative.

E(level)	$J^{\pi \dagger}$	T _{1/2}	Comments
0.0^{\ddagger}	(1) ⁻	2.46 min 3	$T_{1/2}$: from the Adopted Levels.
20.1 [#] 1	1^{+}	87.5 ns 27	$T_{1/2}$: from $\gamma\gamma(t)$ with K x-ray-20.1 γ (1968Ko10).
49.8 [‡]	$(2)^{-}$		
74.6 [#]	$(2)^{+}$		
218.2			
249.9			
349.2			
401.8			
668.6			
717.0			

 † From the Adopted Levels.

[±] Band(A): $K^{\pi}=1^{-}$ band. Probable configuration=(($\nu 7/2[514])-(\pi 5/2[402])$.

[#] Band(B): $K^{\pi}=1^+$ band. Probable configuration=(($\pi 9/2[514]$)-($\nu 7/2[514]$)).

 ε, β^+ radiations

E(decay)	E(level)	$I\beta^+$ [†]	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^\dagger$	Comments
$(1.45 \times 10^3 \ 3)$	20.1	< 0.063	<99.9	>4.7	<100	av Eβ=214 13; εK=0.8130 2; εL=0.14188 21; εM+=0.04450 8

[†] Absolute intensity per 100 decays.

$\gamma(^{180}\text{Re})$

I γ normalization: From (K x-ray(Re)+K x-ray(W))/20.1 γ =10.2 *18* for a ¹⁸⁰Os source in equilibrium with ¹⁸⁰Re (1968Ko10) and assuming that ¹⁸⁰Re decays 92.8% by electron capture to ¹⁸⁰W, and using theoretical ε K(exp)/ ε ratios and γ -ray conversion coefficients. The normalization factor is consistent with 100% ε feeding to the 20-keV level.

K x-ray intensity=79.1%, L x-ray intensity=33% 12 (1968Ko10). K x-ray intensity=84.6% 90 (1967Ho12).

				1	80 Os ε	decay	1968Ha3	9,1968Ko10 (continued)
	$\gamma(^{180}\text{Re})$ (continued)							
Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.	α	Comments
20.1 1	100	20.1	1+	0.0	(1) ⁻	E1	5.80 12	α (L)=4.45 9; α (M)=1.065 21; α (N)=0.244 5; α (O)=0.0327 7; α (P)=0.000854 15 Mult.: from α (L)exp≤6 (1968Ko10), and ce(M1):ce(M2):ce(M3):ce(M4)+ce(M5)=7.0:7.5:10:5.6 (1968Ha39).
31.6		249.9		218.2				
48.2		717.0		668.6				
49.8		49.8	(2) ⁻	0.0	(1)-	M1	6.82	α (L)=5.27 8; α (M)=1.205 17; α (N)=0.292 4; α (O)=0.0490 7; α (P)=0.00358 5 Mult : from ce(L1):ce(L2):ce(L3)=75:10:weak (1968Ha39)
54.4		74.6	(2)+	20.1	1+	M1	5.26	α (L)=4.06 6; α (M)=0.929 13; α (N)=0.225 4; α (O)=0.0378 6; α (P)=0.00276 4 Mult.: from ce(L1):ce(L2):ce(L3):ce(M)=50:≈5:weak:15 (1968Ha39)
74.6		74.6	(2)+	0.0	(1) ⁻	E1	0.800	$\alpha(K)=0.640 \ 9; \ \alpha(L)=0.1238 \ 18; \ \alpha(M)=0.0285 \ 4; \ \alpha(N)=0.00674 \ 10; \ \alpha(O)=0.001036 \ 15 \ \alpha(P)=4.78\times10^{-5} \ 7 \ Mult : from ce(L1):ce(L2):ce(M)=9'3'4 (1968Ha39)$
^x 104.0								
^x 107.0								
^x 113.7								
183.8		401.8		218.2				
200.1		249.9		49.8	$(2)^{-}$			
218.2		218.2		0.0	$(1)^{-}$			
250.0		249.9		0.0	$(1)^{-}$			
319.4		668.6		349.2				
329.0		349.2		20.1	1^{+}			
349.1		349.2		0.0	$(1)^{-}$			
401.5		401.8		0.0	$(1)^{-}$			
450.4		668.6		218.2				
^485.7				10 -				
667.0		717.0		49.8	$(2)^{-}$			
717.4		717.0		0.0	$(1)^{-}$			

[†] For absolute intensity per 100 decays, multiply by 0.17 4. ^{*x*} γ ray not placed in level scheme.

¹⁸⁰Os ε decay 1968Ha39,1968Ko10

Decay Scheme

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

 $^{180}_{75}\mathrm{Re}_{105}$