|                                                                                                              |                                                              | Type                                                        | А                                    | uthor                                                                                                                                                                                                                                                                       | History<br>Citation                                                                                                                | Literature Cutoff Date                                                       |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--|--|--|--|
|                                                                                                              |                                                              | Full Evaluation                                             | E. A. 1                              | Mccutchan                                                                                                                                                                                                                                                                   | NDS 126, 151 (2015)                                                                                                                | 1-Feb-2015                                                                   |  |  |  |  |
| $Q(\beta^{-}) = -8841 \ 23$<br>S(2n)=18581 15;<br>I $\gamma(x)$ : Additional a:<br>$\alpha$ : Additional inf | 3; S(n)=102;<br>; S(2p)=546<br>l information<br>formation 2. | 39 <i>14</i> ; S(p)=364:<br>9 <i>17</i> ; Q(ɛp)=129<br>n 1. | 5 16; Q(a<br>95 20 ( <mark>20</mark> | e)=5240 <i>30</i><br>12Wa38).                                                                                                                                                                                                                                               | 2012Wa38                                                                                                                           |                                                                              |  |  |  |  |
|                                                                                                              |                                                              |                                                             |                                      | -                                                                                                                                                                                                                                                                           | <sup>180</sup> Pt Levels                                                                                                           |                                                                              |  |  |  |  |
|                                                                                                              |                                                              |                                                             |                                      | Cross Ref                                                                                                                                                                                                                                                                   | erence (XREF) Flags                                                                                                                |                                                                              |  |  |  |  |
|                                                                                                              |                                                              |                                                             |                                      | A <sup>180</sup> / <sub>4</sub><br>B <sup>181</sup> H<br>C <sup>184</sup> H<br>D (HI,                                                                                                                                                                                       | Au $\varepsilon$ decay<br>Hg $\varepsilon$ p decay<br>Hg $\alpha$ decay<br>xn $\gamma$ )                                           |                                                                              |  |  |  |  |
| E(level) <sup>†</sup>                                                                                        | $\mathbf{J}^{\pi}$                                           | T <sub>1/2</sub> ‡                                          | XREF                                 |                                                                                                                                                                                                                                                                             |                                                                                                                                    | Comments                                                                     |  |  |  |  |
| 0.0#                                                                                                         | 0+                                                           | 56 s <i>3</i>                                               | ABCD                                 | <ul> <li>%ε+%β<sup>+</sup>≈99.7; %α≈0.3</li> <li>T<sub>1/2</sub>: weighted average of 60 s 3 (1993Me13), 50 s 5 (1966Si08), and 53 s 4 (1968De01).</li> <li>%α: from 1966Si08.</li> <li>δ<r<sup>2&gt;=-0.360 11 relative to <sup>194</sup>Pt (2000Le40).</r<sup></li> </ul> |                                                                                                                                    |                                                                              |  |  |  |  |
| 153.24 <sup>#</sup> 7                                                                                        | 2+                                                           | 374 ps <i>35</i>                                            | ABCD                                 | $\mu$ =+0.64 <i>12</i><br>J <sup><math>\pi</math></sup> : E2 153 $\gamma$ to 0 <sup>+</sup> ; band member.<br>$\mu$ : from IPAC (1998Br33). Other: +0.70 <i>16</i> from PDCO (extracted from Fig<br>19 of 2002Ro36 by evaluator).                                           |                                                                                                                                    |                                                                              |  |  |  |  |
| 410.73 <sup>#</sup> 8                                                                                        | 4+                                                           | 22.9 ps 28                                                  | AB D                                 | $\mu$ =+1.6 6<br>XREF: B(3)<br>J <sup><math>\pi</math></sup> : E2 258<br>$\mu$ : from PI                                                                                                                                                                                    | ?).<br>$\gamma$ to 2 <sup>+</sup> ; band member.<br>DCO (extracted from Fig                                                        | 19 of 2002Ro36 by evaluator).                                                |  |  |  |  |
| 478.13 <sup>@</sup> 15                                                                                       | $0^{+}$                                                      |                                                             | A CD                                 | J <sup>π</sup> : E0 478                                                                                                                                                                                                                                                     | transition to $0^+$ .                                                                                                              | -                                                                            |  |  |  |  |
| 677.48 <mark>&amp;</mark> 8                                                                                  | 2+                                                           |                                                             | Α                                    | J <sup>π</sup> : E0+E2                                                                                                                                                                                                                                                      | 524 $\gamma$ to 2 <sup>+</sup> .                                                                                                   |                                                                              |  |  |  |  |
| 757.06 <sup>#</sup> 15                                                                                       | 6+                                                           | ≤35 ps                                                      | A D                                  | J <sup>π</sup> : E2 346                                                                                                                                                                                                                                                     | $5.5\gamma$ to $4^+$ ; band member.                                                                                                |                                                                              |  |  |  |  |
| 861.39 <sup>@</sup> 7                                                                                        | 2+                                                           |                                                             | Α                                    | $J^{\pi}$ : E0+M1                                                                                                                                                                                                                                                           | $1+E2\ 708\gamma\ to\ 2^+,\ E2\ 861$                                                                                               | $\gamma$ to 0 <sup>+</sup> .                                                 |  |  |  |  |
| 962.68 <sup>&amp;</sup> 10                                                                                   | 3(+)                                                         |                                                             | A D                                  | $J^{\pi}$ : J=3 from member.                                                                                                                                                                                                                                                | om $\gamma\gamma(\theta)$ in <sup>180</sup> Au $\varepsilon$ deca                                                                  | y; (E2) $809\gamma$ to 2 <sup>+</sup> , $552\gamma$ to 4 <sup>+</sup> ; band |  |  |  |  |
| 1049.25 <sup>&amp;</sup> 13                                                                                  | (4+)                                                         |                                                             | A                                    | J <sup>π</sup> : (M1+E                                                                                                                                                                                                                                                      | (2) 639 $\gamma$ to 4 <sup>+</sup> , 896 $\gamma$ to 2                                                                             | 2 <sup>+</sup> ; band member.                                                |  |  |  |  |
| 1177.7 7                                                                                                     | $0^{+}$                                                      |                                                             | Α                                    | $J^{\pi}$ : (E2) 10                                                                                                                                                                                                                                                         | )24 $\gamma$ to 2 <sup>+</sup> , $\gamma\gamma(\theta)$ in <sup>180</sup> A                                                        | Au $\varepsilon$ decay.                                                      |  |  |  |  |
| 1181.49 <sup>#</sup> 18                                                                                      | 8+                                                           |                                                             | D                                    | J <sup>π</sup> : E2 424                                                                                                                                                                                                                                                     | $\gamma$ to 6 <sup>+</sup> ; band member.                                                                                          |                                                                              |  |  |  |  |
| 1187.22 18                                                                                                   | 2+                                                           |                                                             | A D                                  | $J^{n}: E0+M1$                                                                                                                                                                                                                                                              | $1+E2 \ 1034\gamma$ to $2^+$ .                                                                                                     |                                                                              |  |  |  |  |
| 1248.18 15                                                                                                   | (4 <sup>+</sup> )                                            |                                                             | A D                                  | J <sup>π</sup> : 1095γ                                                                                                                                                                                                                                                      | to $2^+$ , 837 $\gamma$ to $4^+$ ; band                                                                                            | member.                                                                      |  |  |  |  |
| 1315.24 <i>14</i><br>1351.11 <i>18</i><br>1387.6 <i>7</i><br>1491 2 <i>7</i>                                 | $(5^{+})$<br>2 <sup>+</sup>                                  |                                                             | A<br>A<br>A                          | $J^{\pi}$ : E2 352<br>$J^{\pi}$ : E0(+M                                                                                                                                                                                                                                     | $\gamma$ to 3 <sup>(7)</sup> , 905 $\gamma$ to 4 <sup>+</sup> , po<br>(1+E2) 490 $\gamma$ to 2 <sup>+</sup> .                      | ssible $558\gamma$ to 6'.                                                    |  |  |  |  |
| 1535.0 5                                                                                                     | $(2^+, 3, 4^+)$                                              |                                                             | A                                    | $J^{\pi}$ : 1124 $\gamma$                                                                                                                                                                                                                                                   | to $4^+$ , 1382 $\gamma$ to $2^+$ .                                                                                                |                                                                              |  |  |  |  |
| 1587.64 <sup>c</sup> 18<br>1614.70 <sup>a</sup> 15                                                           | (4,5 <sup>+</sup> )<br>(5 <sup>-</sup> ,4 <sup>+</sup> )     |                                                             | D<br>D                               | $J^{\pi}: 625\gamma$ to<br>$J^{\pi}: 858\gamma$ to<br>neighbor                                                                                                                                                                                                              | $3^{(+)}$ , 272 $\gamma$ to (5 <sup>+</sup> ).<br>$5^{+}$ , 1204 $\gamma$ to 4 <sup>+</sup> ; system<br>ing Os isotopes favors the | natics of negative parity bands in $L^{\pi} = 5^{-}$ assignment              |  |  |  |  |
| 1649.90 <sup>@</sup> 19                                                                                      | (6 <sup>+</sup> )                                            |                                                             | D                                    | $J^{\pi}$ : 402 $\gamma$ to                                                                                                                                                                                                                                                 | $(4^+)$ ; band member.                                                                                                             |                                                                              |  |  |  |  |

Continued on next page (footnotes at end of table)

# <sup>180</sup>Pt Levels (continued)

| E(level) <sup>†</sup>          | $J^{\pi}$                         | XREF   | Comments                                                                                                         |
|--------------------------------|-----------------------------------|--------|------------------------------------------------------------------------------------------------------------------|
| 1674.28 <sup>#</sup> 23        | 10+                               | D      | $J^{\pi}$ : E2 493 $\gamma$ to 8 <sup>+</sup> ; band member.                                                     |
| 1727.24 <sup>&amp;</sup> 17    | $(7^{+})$                         | D      | $J^{\pi}$ : E2 412 $\gamma$ to (5 <sup>+</sup> ), 970 $\gamma$ to 6 <sup>+</sup> .                               |
| 1815.03 <sup><i>c</i></sup> 16 | (6,7 <sup>+</sup> )               | D      | $J^{\pi}$ : (E2) 227 $\gamma$ to (4,5 <sup>+</sup> ); band member.                                               |
| 1852.20 <sup><i>a</i></sup> 17 | $(7^{-},6^{+})$                   | D      | $J^{\pi}$ : E2 238 $\gamma$ to (4 <sup>+</sup> ,5 <sup>-</sup> ); band member.                                   |
| 1915.34 <sup><i>a</i></sup> 19 | $(6,7^+)$                         | D      | $J^{\pi}$ : 328 $\gamma$ to (4,5 <sup>+</sup> ), 600 $\gamma$ to (5 <sup>+</sup> ).                              |
| $2012.23^{\circ}\ 21$          | $(7,8^{+})$                       | D      | $J^{*}: 362\gamma$ to $(6^{+}), 831\gamma$ to $8^{+}$ .                                                          |
| 2107.24* 17                    | (8,9*)                            | ע      | $J^{**}(E_2)$ 5807 to $(7^{*})$ , $(E_2)$ 2927 to $(0,7^{*})$ ; band member.                                     |
| 2161.93<br>$2168.94^a$ 23      | (9 <sup>-</sup> ,8 <sup>+</sup> ) | D      | $J^{\pi}$ : E2 317 $\gamma$ to (6 <sup>+</sup> ,7 <sup>-</sup> ), 495 $\gamma$ to 10 <sup>+</sup> ; band member. |
| 2182.92 <sup>d</sup> 18        | (8,9 <sup>+</sup> )               | D      | $J^{\pi}$ : (E2) 268 $\gamma$ to (6,7 <sup>+</sup> ); band member.                                               |
| 2198.4? <sup>&amp;</sup> 7     | (9 <sup>+</sup> )                 | D      | $J^{\pi}$ : 471 $\gamma$ to (7 <sup>+</sup> ), 1017 $\gamma$ to 8 <sup>+</sup> ; band member.                    |
| 2229.2 <sup>#</sup> 3          | 12+                               | D      | $J^{\pi}$ : E2 555 $\gamma$ to 10 <sup>+</sup> ; band member.                                                    |
| 2286.65 <sup>b</sup> 19        | (8,9)                             | D      | $J^{\pi}$ : (D) 179 $\gamma$ to (8.9 <sup>+</sup> ), 275 $\gamma$ to (7.8 <sup>+</sup> ).                        |
| 2401.6? 7                      |                                   | D      |                                                                                                                  |
| 2444.34 <sup>b</sup> 21        | (9,10)                            | D      | $J^{\pi}$ : (D) 158 $\gamma$ to (8,9 <sup>-</sup> ).                                                             |
| 2455.0 <i>f</i> 3              | (9,10)                            | D      | $J^{\pi}$ : (D) 286 $\gamma$ to (8 <sup>+</sup> ,9 <sup>-</sup> ).                                               |
| 2556.7 <sup>a</sup> 3          | $(11^-, 10^+)$                    | D      | $J^{\pi}$ : E2 388 $\gamma$ to (8 <sup>+</sup> ,9 <sup>-</sup> ); band member.                                   |
| 2557.98 <sup>d</sup> 21        | $(10, 11^+)$                      | D      | $J^{\pi}$ : 375 $\gamma$ to (8,9 <sup>+</sup> ); band member.                                                    |
| 2626.10 <sup>b</sup> 22        | (10,11)                           | D      | $J^{\pi}$ : (E2) 340 $\gamma$ to (8,9), (D) 182 $\gamma$ to (9,10); band member.                                 |
| 2764.7 <sup>e</sup> 3          | $(12^{+})$                        | D      | $J^{\pi}$ : (E2) 1090 $\gamma$ to 10 <sup>+</sup> .                                                              |
| 2834.20 <sup>b</sup> 24        | (11,12)                           | D      | $J^{\pi}$ : E2 390 $\gamma$ to (9,10), (D) 208 $\gamma$ to (10,11); band member.                                 |
| 2841.6 <sup>#</sup> 3          | 14+                               | D      | $J^{\pi}$ : E2 612 $\gamma$ to 12 <sup>+</sup> ; band member.                                                    |
| 2872.7 <b>f</b> 3              | (11,12)                           | D      | $J^{\pi}$ : (E2) 418 $\gamma$ to (9,10); band member.                                                            |
| 3006.3 <sup>d</sup> 3          | $(12, 13^+)$                      | D      | $J^{\pi}$ : 448 $\gamma$ to (10 <sup>-</sup> ,11 <sup>+</sup> ); band member.                                    |
| 3007.8 <sup><i>a</i></sup> 4   | $(13^{-}, 12^{+})$                | D      | $J^{\pi}$ : E2 451 $\gamma$ to (10 <sup>+</sup> ,11 <sup>-</sup> ); band member.                                 |
| 3050.5 <sup>b</sup> 3          | (12,13)                           | D      | $J^{\pi}$ : (D) 216 $\gamma$ to (11,12), 425 $\gamma$ to (10,11); band member.                                   |
| 3208.8 <sup>e</sup> 3          | $(14^{+})$                        | D      | $J^{\pi}$ : (E2) 444 $\gamma$ to (12 <sup>+</sup> ), (E2) 980 $\gamma$ to 12 <sup>+</sup> ; band member.         |
| 3301.9 <sup>b</sup> 3          | (13,14)                           | D      | $J^{\pi}$ : 251 $\gamma$ to (12,13), E2 468 $\gamma$ to (11,12); band member.                                    |
| 3361.3 <sup><i>f</i></sup> 4   | (13,14)                           | D      | $J^{\pi}$ : E2 489 $\gamma$ to (11,12); band member.                                                             |
| 3504.9 <sup>#</sup> 4          | 16+                               | D      | $J^{\pi}$ : E2 663 $\gamma$ to 14 <sup>+</sup> ; band member.                                                    |
| 3507.1 <sup><i>a</i></sup> 4   | $(15^-, 14^+)$                    | D      | $J^{\pi}$ : E2 499 $\gamma$ to (12 <sup>+</sup> ,13 <sup>-</sup> ); band member.                                 |
| 3510.2 <sup>d</sup> 4          | $(14, 15^+)$                      | D      | $J^{\pi}$ : 504 $\gamma$ to (12,13 <sup>+</sup> ); band member.                                                  |
| 3544.7 <mark>6</mark> 8        | (14,15)                           | D      | $J^{\pi}$ : (D) 243 $\gamma$ to (13,14), 494 $\gamma$ to (12,13); band member.                                   |
| 3571.6 4                       | (4.61)                            | D      |                                                                                                                  |
| 36/6.6° 3                      | (16 <sup>+</sup> )                | D      | $J^{*}$ : (E2) 468 $\gamma$ to (14 <sup>+</sup> ), (E2) 835 $\gamma$ to 14 <sup>+</sup> ; band member.           |
| 3832.90 3                      | (15,16)                           | D      | $J^{\pi}$ : E2 531 $\gamma$ to (13,14); band member.                                                             |
| 3911.1 4                       | (15,16)                           | D      | $J^{\pi}$ : E2 550 $\gamma$ to (13,14); band member.                                                             |
| 4044.2 <sup><i>d</i></sup> 4   | (1/ ,16')                         | D      | $J^*: E2 53/\gamma$ (E2) to (14 <sup>+</sup> ,15 <sup>-</sup> ); band member.                                    |
| $4063.4^{a}$ 4                 | (16,17)                           | D      | $J^{\prime\prime}$ : 553 $\gamma$ to (14,15 <sup>+</sup> ); band member.                                         |
| 4099.70 13                     | (16,17)                           | D      | $J^{n}$ : (E2) 555 $\gamma$ to (14,15); band member.                                                             |
| 4120.04<br>$4180.9^{e}$ 4      | $(18^{+})$                        | D      | $J^{\pi}$ : (E2) 505 $\gamma$ (E2) to (16 <sup>+</sup> ), (E2) 676 $\gamma$ to 16 <sup>+</sup> ; band member.    |
| 4252.7 <sup>#</sup> 4          | 18+                               | D      | $J^{\pi}$ : E2 747 $\gamma$ to 16 <sup>+</sup> ; band member.                                                    |
| 4420.9 <sup>b</sup> 11         | (17.18)                           | –<br>D | $J^{\pi}$ : (E2) 588y to (15.16); band member.                                                                   |
| $4512.5^{f}5$                  | (17, 18)                          | ے<br>م | $I^{\pi}$ : E2 601 $\gamma$ to (15.16); hand member                                                              |
| 4639.8 <sup><i>a</i></sup> 5   | $(19^{-}, 18^{+})$                | D      | $J^{\pi}$ : E2 596 $\gamma$ to (16 <sup>+</sup> ,17 <sup>-</sup> ); band member.                                 |
| 4661.1 <sup><i>d</i></sup> 5   | (18,19 <sup>+</sup> )             | D      | $J^{\pi}$ : 598 $\gamma$ to (16,17 <sup>+</sup> ); band member.                                                  |
|                                |                                   |        |                                                                                                                  |

Continued on next page (footnotes at end of table)

### <sup>180</sup>Pt Levels (continued)

| E(level) <sup>†</sup>   | $J^{\pi}$                           | XREF | Comments                                                                           |
|-------------------------|-------------------------------------|------|------------------------------------------------------------------------------------|
| 4676.3 5                |                                     | D    |                                                                                    |
| 4709.7? <sup>b</sup> 16 | (18,19)                             | D    | $J^{\pi}$ : (E2) 610 $\gamma$ to (16,17); band member.                             |
| 4804.4 <sup>e</sup> 4   | $(20^{+})$                          | D    | $J^{\pi}$ : (E2) 623 $\gamma$ (E2) to (18 <sup>+</sup> ); band member.             |
| 4984.6 <sup>#</sup> 4   | $20^{+}$                            | D    | $J^{\pi}$ : E2 732 $\gamma$ to 18 <sup>+</sup> ; band member.                      |
| 5062.9 <sup>b</sup> 15  | (19,20)                             | D    | $J^{\pi}$ : (E2) 642 $\gamma$ to (17,18); band member.                             |
| 5160.6 <sup>f</sup> 5   | (19,20)                             | D    | $J^{\pi}$ : (E2) 648 $\gamma$ to (17,18); band member.                             |
| 5289.3 <sup>a</sup> 5   | $(21^-, 20^+)$                      | D    | $J^{\pi}$ : (E2) 650 $\gamma$ to (18 <sup>+</sup> ,19 <sup>-</sup> ); band member. |
| 5293.0 <sup>d</sup> 5   | $(20, 21^+)$                        | D    | $J^{\pi}$ : 632 $\gamma$ to (18,19 <sup>+</sup> ); band member.                    |
| 5399.8 11               |                                     | D    |                                                                                    |
| 5468.2 <sup>e</sup> 5   | $(22^{+})$                          | D    | $J^{\pi}$ : (E2) 664 $\gamma$ to (20 <sup>+</sup> ); band member.                  |
| 5728.5 <sup>#</sup> 8   | $22^{+}$                            | D    | $J^{\pi}$ : (E2) 744 $\gamma$ to 20 <sup>+</sup> ; band member.                    |
| 5753.9 <sup>b</sup> 18  | (21,22)                             | D    | $J^{\pi}$ : 691 $\gamma$ to (19,20); band member.                                  |
| 5852.6 <sup>f</sup> 11  | (21,22)                             | D    | $J^{\pi}$ : 692 $\gamma$ to (19,20); band member.                                  |
| 5938.0? <sup>d</sup> 11 | $(22,23^+)$                         | D    | $J^{\pi}$ : 645 $\gamma$ to (20,21 <sup>+</sup> ); band member.                    |
| 5947.6 <sup>a</sup> 6   | (23 <sup>-</sup> ,22 <sup>+</sup> ) | D    | $J^{\pi}$ : 658 $\gamma$ to (20 <sup>+</sup> ,21 <sup>-</sup> ); band member.      |
| 6007.3 9                |                                     | D    |                                                                                    |
| 6178.7 <sup>e</sup> 5   | $(24^{+})$                          | D    | $J^{\pi}$ : (E2) 710 $\gamma$ to (22 <sup>+</sup> ); band member.                  |
| 6490.9? <sup>b</sup> 20 |                                     | D    |                                                                                    |
| 6525.6 11               |                                     | D    |                                                                                    |
| 6551.5 <sup>#</sup> 13  | (24 <sup>+</sup> )                  | D    | $J^{\pi}$ : 823 $\gamma$ to 22 <sup>+</sup> ; band member.                         |
| 6580.6 <sup>f</sup> 15  | (23,24)                             | D    | $J^{\pi}$ : 728 $\gamma$ to (21,22); band member.                                  |
| 6618.4 <sup>a</sup> 6   | $(25^{-}, 24^{+})$                  | D    | $J^{\pi}$ : 671 $\gamma$ to (22 <sup>+</sup> ,23 <sup>-</sup> ); band member.      |
| 6935.8 <mark>°</mark> 5 | (26 <sup>+</sup> )                  | D    | $J^{\pi}$ : (E2) 757 $\gamma$ to (24 <sup>+</sup> ); band member.                  |
| 7237.6? 15              |                                     | D    |                                                                                    |
| 7434.5 <sup>#</sup> 16  | (26 <sup>+</sup> )                  | D    | $J^{\pi}$ : 883 $\gamma$ to (24 <sup>+</sup> ); band member.                       |

 $^\dagger$  From a least-squares fit to Ey by evaluator.

<sup>±</sup> From RDM measurements in (HI,xn $\gamma$ ), except where noted.

<sup>#</sup> Band(A):  $K^{\pi}=0^+$  g.s. rotational band.

<sup>@</sup> Band(B):  $K^{\pi}=0^+ \beta$ -vibrational band.

& Band(C):  $K^{\pi}=2^+ \gamma$ -vibrational band. <sup>*a*</sup> Band(D):  $K^{\pi}=(5^-,4^+)$  rotational band.

<sup>*b*</sup> Band(E):  $K^{\pi} = (8,9^{-})$  rotational band.

<sup>*c*</sup> Band(F):  $K^{\pi} = (4,5^+)$  rotational band.

<sup>*d*</sup> Band(G):  $K^{\pi} = (6,7^+)$  rotational band.

<sup>*e*</sup> Band(H):  $K^{\pi} = (12^+)$  rotational band.

<sup>*f*</sup> Band(I):  $K^{\pi}$ =(9,10) rotational band.

|                        | Adopted Levels, Gammas (continued) |                        |                           |                                     |                    |                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|------------------------|------------------------------------|------------------------|---------------------------|-------------------------------------|--------------------|------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                        |                                    |                        |                           |                                     |                    | $\gamma(^{180}]$ | Pt)        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$               | $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\dagger}$    | $\mathbf{E}_f = \mathbf{J}_f^{\pi}$ | Mult. <sup>‡</sup> | <i>δ</i> &       | α          | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| 153.24                 | 2+                                 | 153.3 <sup>#</sup> 1   | 100                       | 0.0 0+                              | E2                 |                  | 0.922      | $\alpha(K)=0.324 5; \alpha(L)=0.449 7; \alpha(M)=0.1156 17; \alpha(N)=0.0282 4; \alpha(O)=0.00444 7 \alpha(P)=3.08 \times 10^{-5} 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| 410.72                 | 4+                                 | 257.6# 1               | 100                       | 152.04.0+                           | 52                 |                  | 0.15(0     | $\begin{array}{l} B(E2)(W.u.) = 154 \ I5 \\ Mult.: from ce data in (HI,xny). \\ (I) = 0.0005 \ I2 \ (I) = 0.0500 \ R \ (II) = 0.01004 \ I0 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| 410.73                 | 4'                                 | 257.6" 1               | 100                       | 153.24 21                           | E2                 |                  | 0.1569     | $\alpha(\mathbf{K})=0.0895 \ 13; \ \alpha(\mathbf{L})=0.0508 \ 8; \ \alpha(\mathbf{M})=0.01284 \ 18; \\ \alpha(\mathbf{N})=0.00314 \ 5; \ \alpha(\mathbf{O})=0.000507 \ 8 \\ \alpha(\mathbf{P})=8.83\times10^{-6} \ 13 \\ \alpha(\mathbf{N})=0.00314 \ 5; \ \alpha(\mathbf{N})=0.000507 \ 8 \\ \alpha(\mathbf{N})=0.000507 \ 8 \ 8 \\ \alpha(\mathbf{N})=0.000507 \ 8 \ 8 \ 8 \ 8 \ 8 \ 8 \ 8 \ 8 \ 8 \ $ |  |  |  |  |
|                        |                                    |                        |                           |                                     |                    |                  |            | B(E2)(W.u.)= $3.1 \times 10^2 4$<br>Mult.: from ce data in (HI,xn $\gamma$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 478.13                 | 0+                                 | 324.7 <sup>#</sup> 2   |                           | 153.24 2+                           | [E2]               |                  | 0.0781     | $\alpha(K)=0.0502\ 7;\ \alpha(L)=0.0211\ 3;\ \alpha(M)=0.00526\ 8;$<br>$\alpha(N)=0.001289\ 19;\ \alpha(O)=0.000211\ 3$<br>$\alpha(P)=5.11\times10^{-6}\ 8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|                        |                                    | 478 <sup>#</sup>       |                           | 0.0 0+                              | E0 <sup>@</sup>    |                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| 677.48                 | 2+                                 | 199.4 <sup>#</sup> 4   | 1.7 <sup>#</sup> 14       | 478.13 0+                           | [E2]               |                  | 0.363 6    | $\alpha$ (K)=0.171 3; $\alpha$ (L)=0.1444 24; $\alpha$ (M)=0.0369 6; $\alpha$ (N)=0.00901 15; $\alpha$ (O)=0.001434 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|                        |                                    | ora o# 5               | 1.0# 7                    | 410 72 4+                           | (FO)               |                  | 0 1 402 22 | $\alpha(P) = 1.635 \times 10^{-5} 25$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|                        |                                    | 267.0" 5               | 1.0" /                    | 410.73 4                            | [E2]               |                  | 0.1403 22  | $\alpha(\mathbf{K})=0.0818\ I2;\ \alpha(\mathbf{L})=0.0442\ /;\ \alpha(\mathbf{M})=0.01114\ I8;\alpha(\mathbf{N})=0.00273\ 5;\ \alpha(\mathbf{O})=0.000441\ 7\alpha(\mathbf{P})=8.11\times10^{-6}\ I2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|                        |                                    | 524.3 <sup>#</sup> 1   | 100 <sup>#</sup> 2        | 153.24 2+                           | E0+E2 <sup>@</sup> |                  | 0.072 6    | $\alpha$ : from sum of $\alpha(K)$ exp, $\alpha(L)$ exp, and $\alpha(M)$ exp in <sup>180</sup> Au $\varepsilon$ decay.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|                        |                                    | 677.5 <sup>#</sup> 1   | 36 <sup>#</sup> 3         | 0.0 0+                              | [E2]               |                  | 0.01227    | $\alpha$ (K)=0.00956 <i>14</i> ; $\alpha$ (L)=0.00208 <i>3</i> ; $\alpha$ (M)=0.000495 <i>7</i> ;<br>$\alpha$ (N)=0.0001218 <i>17</i> ; $\alpha$ (O)=2.10×10 <sup>-5</sup> <i>3</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| 757.06                 | 6+                                 | 346.5 2                | 100                       | 410.73 4+                           | E2                 |                  | 0.0649     | $\alpha(P)=1.012\times10^{-6} I5$<br>$\alpha(K)=0.0429 6; \alpha(L)=0.01668 24; \alpha(M)=0.00414 6;$<br>$\alpha(N)=0.001016 I5; \alpha(O)=0.0001672 24$<br>$\alpha(P)=4.39\times10^{-6} 7$<br>B(E2)(W.u.) $\geq 50$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| 861 30                 | $2^+$                              | 184 3# 5               | 1.6 <sup>#</sup> .10      | 677 18 2+                           |                    |                  |            | Mult.: from ce data in ( $HI, xn\gamma$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| 801.39                 | 2                                  | 382.9 <sup>#</sup> 3   | $1.0 \ 10$<br>$14^{\#} 3$ | 478.13 0 <sup>+</sup>               | (E2) <sup>@</sup>  |                  | 0.0492     | $\alpha(K)=0.0337\ 5;\ \alpha(L)=0.01175\ 17;\ \alpha(M)=0.00290\ 5;$<br>$\alpha(N)=0.000712\ 11;\ \alpha(O)=0.0001180\ 17$<br>$\alpha(P)=3\ 49\times10^{-6}\ 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                        |                                    | 450.7 <sup>#</sup> 1   | 19.3 <sup>#</sup> 21      | 410.73 4+                           | (E2) <sup>@</sup>  |                  | 0.0321     | $\alpha(K) = 0.0231 \ 4; \ \alpha(L) = 0.00684 \ 10; \ \alpha(M) = 0.001672 \ 24; \alpha(N) = 0.000411 \ 6; \ \alpha(O) = 6.89 \times 10^{-5} \ 10 \alpha(P) = 2.42 \times 10^{-6} \ 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|                        |                                    | 708.2 <sup>#</sup> 1   | 16 <sup>#</sup> 2         | 153.24 2+                           | E0+M1+E2@          | 2.0 +36-11       | 0.24 10    | $\alpha(K)=0.012\ 7;\ \alpha(L)=0.0023\ 9;\ \alpha(M)=0.00054\ 19;\ \alpha(N)=0.00013$<br>5; $\alpha(O)=2.3\times10^{-5}\ 9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |

4

From ENSDF

 $^{180}_{78}\text{Pt}_{102}\text{-}4$ 

 $^{180}_{78}\text{Pt}_{102}\text{-}4$ 

L

|                        | Adopted Levels, Gammas (continued) |                                              |                                |                                                |                       |                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|------------------------|------------------------------------|----------------------------------------------|--------------------------------|------------------------------------------------|-----------------------|--------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                        |                                    |                                              |                                |                                                |                       | $\gamma(^{180}P)$  | t) (continued) |                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$                 | ${\rm E_{\gamma}}^{\dagger}$                 | $I_{\gamma}^{\dagger}$         | $\mathbf{E}_f = \mathbf{J}_f^{\pi}$            | Mult. <sup>‡</sup>    | δ <sup>&amp;</sup> | α              | Comments                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| 861.39                 | 2+                                 | 861.3 <sup>#</sup> 1                         | 100 <sup>#</sup> 7             | 0.0 0+                                         | E2 <sup>@</sup>       |                    | 0.00739        | $\alpha(P)=1.3\times10^{-6} 7$<br>$\alpha$ : from sum of $\alpha$ (K)exp and $\alpha$ (L)exp in <sup>180</sup> Au $\varepsilon$ decay.<br>$\alpha$ (K)=0.00591 9; $\alpha$ (L)=0.001132 16; $\alpha$ (M)=0.000266 4;<br>$\alpha$ (N)=6.56×10 <sup>-5</sup> 10<br>$\alpha$ (D)=1.147×10 <sup>-5</sup> 16 $\alpha$ (D)=6.25×10 <sup>-7</sup> 0                                                                                       |  |  |  |  |
| 962.68                 | 3(+)                               | 285.8 <sup>#</sup> 4<br>551.9 <sup>#</sup> 1 | $3.2^{\#} 6$<br>$12.8^{\#} 16$ | 677.48 2 <sup>+</sup><br>410.73 4 <sup>+</sup> | 0                     |                    |                | $a(0)=1.147\times10^{-6}10; a(P)=0.25\times10^{-6}9$                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|                        |                                    | 809.4 <sup>#</sup> 1                         | 100# 4                         | 153.24 2+                                      | (E2) <sup>@</sup>     |                    | 0.00840        | $\begin{aligned} &\alpha(\mathbf{K}) = 0.00668 \ 10; \ \alpha(\mathbf{L}) = 0.001316 \ 19; \ \alpha(\mathbf{M}) = 0.000311 \ 5; \\ &\alpha(\mathbf{N}) = 7.66 \times 10^{-5} \ 11 \\ &\alpha(\mathbf{O}) = 1.334 \times 10^{-5} \ 19; \ \alpha(\mathbf{P}) = 7.07 \times 10^{-7} \ 10 \end{aligned}$                                                                                                                               |  |  |  |  |
| 1049.25                | (4+)                               | 372.0 <sup>#</sup> 4                         | 15 <sup>#</sup> 4              | 677.48 2+                                      | [E2]                  |                    | 0.0532         | $\alpha$ (K)=0.0361 6; $\alpha$ (L)=0.01299 19; $\alpha$ (M)=0.00321 5;<br>$\alpha$ (N)=0.000788 12; $\alpha$ (O)=0.0001303 19<br>$\alpha$ (P)=3.73×10 <sup>-6</sup> 6                                                                                                                                                                                                                                                             |  |  |  |  |
|                        |                                    | 638.5 <sup>#</sup> 1                         | 100 <sup>#</sup> 13            | 410.73 4+                                      | (M1+E2) <sup>@</sup>  |                    | 0.028 14       | $\alpha(K)=0.022 \ l2; \ \alpha(L)=0.0039 \ l5; \ \alpha(M)=0.0009 \ 4; \ \alpha(N)=0.00023 \ 9; \ \alpha(O)=4.0\times10^{-5} \ l6 \ \alpha(P)=2 \ 5\times10^{-6} \ l4$                                                                                                                                                                                                                                                            |  |  |  |  |
|                        |                                    | 895.8 <sup>#</sup>                           | 17 <sup>#</sup> 8              | 153.24 2+                                      | [E2]                  |                    | 0.00682        | $\alpha(K) = 0.00548 \ 8; \ \alpha(L) = 0.001031 \ 15; \ \alpha(M) = 0.000242 \ 4; \alpha(N) = 5.97 \times 10^{-5} \ 9; \ \alpha(O) = 1.045 \times 10^{-5} \ 15 \alpha(P) = 5.79 \times 10^{-7} \ 9$                                                                                                                                                                                                                               |  |  |  |  |
| 1177.7                 | 0+                                 | 500.3 <sup>#</sup>                           | 13 <sup>#</sup> 8              | 677.48 2+                                      | [E2]                  |                    | 0.0247         | $\alpha$ (K)=0.0182 3; $\alpha$ (L)=0.00493 7; $\alpha$ (M)=0.001198 17;<br>$\alpha$ (N)=0.000294 5; $\alpha$ (O)=4.97×10 <sup>-5</sup> 7<br>$\alpha$ (P)=1.92×10 <sup>-6</sup> 3                                                                                                                                                                                                                                                  |  |  |  |  |
|                        |                                    | 1024.3 <sup>#</sup>                          | 100 <sup>#</sup> <i>10</i>     | 153.24 2+                                      | (E2) <sup>@</sup>     |                    | 0.00522        | $\alpha(\mathbf{K})=0.00424\ 6;\ \alpha(\mathbf{L})=0.000757\ 11;\ \alpha(\mathbf{M})=0.0001767\ 25;\ \alpha(\mathbf{N})=4.36\times10^{-5}\ 6$                                                                                                                                                                                                                                                                                     |  |  |  |  |
| 1181.49                | 8+                                 | 424.3 2                                      | 100                            | 757.06 6+                                      | E2                    |                    | 0.0375         | $\begin{aligned} \alpha(\text{O}) &= 7.68 \times 10^{-11}, \ \alpha(\text{I}) = 4.46 \times 10^{-7} \\ \alpha(\text{K}) &= 0.0265 \ 4; \ \alpha(\text{L}) = 0.00832 \ 12; \ \alpha(\text{M}) = 0.00204 \ 3; \\ \alpha(\text{N}) &= 0.000501 \ 7; \ \alpha(\text{O}) = 8.37 \times 10^{-5} \ 12 \\ \alpha(\text{P}) &= 2.77 \times 10^{-6} \ 4 \end{aligned}$ $\begin{aligned} \text{Mult: from ce data in (HLxny).} \end{aligned}$ |  |  |  |  |
| 1187.22                | 2+                                 | 326.2 <sup>#</sup> 5                         | <3 <b>#</b>                    | 861.39 2+                                      |                       |                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|                        |                                    | 708.9 <sup>#</sup>                           | 2.5 <sup>#</sup> 17            | 478.13 0+                                      | [E2]                  |                    | 0.01112        | $\alpha$ (K)=0.00871 <i>13</i> ; $\alpha$ (L)=0.00184 <i>3</i> ; $\alpha$ (M)=0.000438 <i>7</i> ;<br>$\alpha$ (N)=0.0001078 <i>15</i> ; $\alpha$ (O)=1.86×10 <sup>-5</sup> <i>3</i><br>$\alpha$ (P)=9.23×10 <sup>-7</sup> <i>13</i>                                                                                                                                                                                                |  |  |  |  |
|                        |                                    | 776.6 <sup>#</sup> 4                         | 5.6 <sup>#</sup> 13            | 410.73 4+                                      | [E2]                  |                    | 0.00916        | $\alpha(K)=0.00725 \ 11; \ \alpha(L)=0.001459 \ 21; \ \alpha(M)=0.000345 \ 5; \ \alpha(N)=8.50\times10^{-5} \ 12 \ \alpha(P)=7.67\times10^{-7} \ 11$                                                                                                                                                                                                                                                                               |  |  |  |  |
|                        |                                    | 1033.9 <sup>#</sup> 2                        | 100 <sup>#</sup> 4             | 153.24 2+                                      | E0+M1+E2 <sup>@</sup> | >5.7               | 0.00523 13     | $\alpha(K) = 0.00425 \ 11; \ \alpha(L) = 0.000753 \ 17; \ \alpha(M) = 0.000176 \ 4; \alpha(N) = 4.33 \times 10^{-5} \ 10 \alpha(O) = 7.65 \times 10^{-6} \ 17; \ \alpha(P) = 4.48 \times 10^{-7} \ 12$                                                                                                                                                                                                                             |  |  |  |  |

S

I

|               |                      |                                      |                                          |                                                  | Adopted Leve            | ls, Gamma    | s (continued)                                                                                                                                                                                                                              |
|---------------|----------------------|--------------------------------------|------------------------------------------|--------------------------------------------------|-------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               |                      |                                      |                                          |                                                  | $\gamma(^{180}$         | Pt) (continu | ued)                                                                                                                                                                                                                                       |
| $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$               | $I_{\gamma}^{\dagger}$                   | $\mathbf{E}_f  \mathbf{J}_f^{\pi}$               | Mult. <sup>‡</sup>      | α            | Comments                                                                                                                                                                                                                                   |
| 1248.18       | (4 <sup>+</sup> )    | 386.6 <sup>#</sup> 3                 | 90 <sup>#</sup> 40                       | 861.39 2+                                        | [E2]                    | 0.0479       | $\alpha(K)=0.0330 \ 5; \ \alpha(L)=0.01137 \ 17; \ \alpha(M)=0.00281 \ 4; \ \alpha(N)=0.000689 \ 10; \\ \alpha(O)=0.0001142 \ 17 \\ \alpha(P)=3.41\times10^{-6} \ 5$                                                                       |
|               |                      | 571.9 <sup>#</sup>                   | ≈27 <sup>#</sup>                         | 677.48 2+                                        | [E2]                    | 0.0180       | $\alpha$ (K)=0.01363 <i>19</i> ; $\alpha$ (L)=0.00332 <i>5</i> ; $\alpha$ (M)=0.000799 <i>12</i> ; $\alpha$ (N)=0.000196<br><i>3</i> ; $\alpha$ (O)=3.35×10 <sup>-5</sup> <i>5</i><br>$\alpha$ (P)=1.441×10 <sup>-6</sup> <i>21</i>        |
|               |                      | 837.4 <sup>#</sup> 4                 | 40 <sup><b>#</b></sup> 30                | 410.73 4+                                        |                         |              |                                                                                                                                                                                                                                            |
|               |                      | 1094.5 <sup>#</sup> 3                | 100 <sup>#</sup> 21                      | 153.24 2+                                        | [E2]                    | 0.00459      | $\alpha(K)=0.00374\ 6;\ \alpha(L)=0.000653\ 10;\ \alpha(M)=0.0001521\ 22;\ \alpha(N)=3.75\times10^{-5}\ 6$                                                                                                                                 |
| 1315.24       | (5 <sup>+</sup> )    | 352.5 2                              | 19 6                                     | 962.68 3 <sup>(+)</sup>                          | E2                      | 0.0618       | $\alpha(O)=0.02\times10^{-10}, \alpha(\Gamma)=3.95\times10^{-0} = 0$<br>$\alpha(K)=0.0411 \ 6; \ \alpha(L)=0.01569 \ 23; \ \alpha(M)=0.00389 \ 6; \ \alpha(N)=0.000955 \ 14; \ \alpha(O)=0.0001573 \ 23 \ \alpha(P)=4.22\times10^{-6} \ 6$ |
|               |                      | 558 <sup>b</sup> 1<br>904.6 2        | 100 9                                    | 757.06 6 <sup>+</sup><br>410.73 4 <sup>+</sup>   | (M1+E2)                 | 0.012 5      | $\alpha$ (K)=0.010 5; $\alpha$ (L)=0.0016 6; $\alpha$ (M)=0.00037 14; $\alpha$ (N)=9.E-5 4;<br>$\alpha$ (O)=1.6×10 <sup>-5</sup> 7<br>$\alpha$ (P)=1.1×10 <sup>-6</sup> 5                                                                  |
|               |                      |                                      |                                          |                                                  |                         |              | Mult.: D+Q from DCO ratio in (HI,xn $\gamma$ ), $\Delta \pi$ =no from level scheme.                                                                                                                                                        |
| 1351.11       | 2+                   | 388.0 <sup>#</sup> 5                 | 17 <b>#</b> 10                           | 962.68 3 <sup>(+)</sup>                          | e                       |              |                                                                                                                                                                                                                                            |
|               |                      | 490 <sup>#</sup>                     |                                          | 861.39 2+                                        | E0(+M1+E2) <sup>@</sup> | 0.05 3       | $\alpha$ (K)=0.044 25; $\alpha$ (L)=0.008 3; $\alpha$ (M)=0.0019 7; $\alpha$ (N)=0.00047 16; $\alpha$ (O)=8.E–5 3; $\alpha$ (P)=5.E–6 3                                                                                                    |
|               |                      | 673.7 <mark>#</mark>                 | ≈7 <b>#</b>                              | 677.48 2+                                        | e                       |              |                                                                                                                                                                                                                                            |
|               |                      | 872.9# 3                             | 100# 11                                  | 478.13 0+                                        | E2 <sup>@</sup>         | 0.00719      | $\alpha(K)=0.00576 \ 8; \ \alpha(L)=0.001096 \ 16; \ \alpha(M)=0.000258 \ 4; \\ \alpha(N)=6.35\times10^{-5} \ 9; \ \alpha(O)=1.111\times10^{-5} \ 16 \\ \alpha(P)=6.09\times10^{-7} \ 9$                                                   |
|               |                      | 940.6 <sup>#</sup> 3                 | 80 <sup>#</sup> <i>30</i>                | 410.73 4+                                        | [E2]                    | 0.00618      | $\alpha$ (K)=0.00498 7; $\alpha$ (L)=0.000919 13; $\alpha$ (M)=0.000215 3;<br>$\alpha$ (N)=5.31×10 <sup>-5</sup> 8; $\alpha$ (O)=9.32×10 <sup>-6</sup> 13<br>$\alpha$ (P)=5.26×10 <sup>-7</sup> 8                                          |
|               |                      | 1197.8 <sup>#</sup> 4                | 22 <sup>#</sup> 4                        | 153.24 2+                                        |                         |              |                                                                                                                                                                                                                                            |
|               |                      | 1351.4 <sup>#</sup>                  | ≈69 <sup>#</sup>                         | 0.0 0+                                           | [E2]                    | 0.00309      | $\alpha$ (K)=0.00252 4; $\alpha$ (L)=0.000416 6; $\alpha$ (M)=9.63×10 <sup>-5</sup> 14;<br>$\alpha$ (N)=2.37×10 <sup>-5</sup> 4; $\alpha$ (O)=4.22×10 <sup>-6</sup> 6<br>$\alpha$ (P)=2.64×10 <sup>-7</sup> 4                              |
| 1387.6        |                      | 710.4 <sup>#</sup>                   | 50 <b>#</b> 30                           | 677.48 2+                                        |                         |              | · ·                                                                                                                                                                                                                                        |
|               |                      | 1234.1 <sup>#</sup>                  | 100 <sup>#</sup> 30                      | 153.24 2+                                        |                         |              |                                                                                                                                                                                                                                            |
| 1491.2        |                      | 528.2 <sup>#</sup>                   | $40^{\#}_{\#} 30$                        | 962.68 3 <sup>(+)</sup>                          |                         |              |                                                                                                                                                                                                                                            |
|               | at a str             | 814.0 <sup>#</sup>                   | $100^{\#} 50$                            | 677.48 2+                                        |                         |              |                                                                                                                                                                                                                                            |
| 1535.0        | (2+,3,4+)            | 571.7 <b>"</b><br>858.1 <sup>#</sup> | 21 <sup>#</sup> 14<br>32 <sup>#</sup> 18 | 962.68 3 <sup>(+)</sup><br>677.48 2 <sup>+</sup> |                         |              |                                                                                                                                                                                                                                            |

6

# $\gamma(^{180}\text{Pt})$ (continued)

| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$              | $E_{\gamma}^{\dagger}$                                         | $I_{\gamma}^{\dagger}$           | $E_f$ J                                                                                               | $\mathbf{J}_f^{\pi}$                                       | Mult. <sup>‡</sup> | α       | Comments                                                                                                                                                                                                                                                                 |
|------------------------|-----------------------------------|----------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1535.0                 | (2+,3,4+)                         | $1124.0^{\#}$                                                  | $100^{\#} 10$                    | 410.73 4 <sup>+</sup><br>153 24 2 <sup>+</sup>                                                        |                                                            |                    |         |                                                                                                                                                                                                                                                                          |
| 1587.64                | (4,5 <sup>+</sup> )               | 272.2 2                                                        | 90 <i>30</i><br>100 <i>40</i>    | $133.24 \ 2$<br>$1315.24 \ (5^+ \ 962.68 \ 3^{(+)})$                                                  | -)<br>·)                                                   |                    |         |                                                                                                                                                                                                                                                                          |
| 1614.70                | (5 <sup>-</sup> ,4 <sup>+</sup> ) | 1177 <i>I</i><br>366.2 2<br>858.0 2                            | 50 20<br>61 7<br>100 15<br>71 15 | $\begin{array}{c} 410.73 & 4^{+} \\ 1248.18 & (4^{+} \\ 757.06 & 6^{+} \\ 410.73 & 4^{+} \end{array}$ | -)                                                         |                    |         |                                                                                                                                                                                                                                                                          |
| 1649.90                | $(6^+)$                           | 401.8 2                                                        | 100                              | $1248.18 (4^+)$                                                                                       | -)                                                         | F2                 | 0.0257  | (K) 0.0190 2 (I) 0.00517 9 (A) 0.001057 19 (A) 0.000200 5                                                                                                                                                                                                                |
| 16/4.28                | 10'                               | 492.8 2                                                        | 100                              | 1181.49 8'                                                                                            |                                                            | E2                 | 0.0257  | $\alpha(K)=0.0189 \ 3; \ \alpha(L)=0.00517 \ 8; \ \alpha(M)=0.001256 \ 78; \ \alpha(N)=0.000309 \ 5; \ \alpha(O)=5.21\times10^{-5} \ 8$                                                                                                                                  |
|                        |                                   |                                                                |                                  |                                                                                                       |                                                            |                    |         | $\alpha$ (P)=1.99×10 <sup>-6</sup> 3<br>Mult.: from ce data in (HI.xn $\gamma$ ).                                                                                                                                                                                        |
| 1727.24                | (7 <sup>+</sup> )                 | 412.2 2                                                        | 58 15                            | 1315.24 (5+                                                                                           | -)                                                         | E2                 | 0.0404  | $\alpha(K)=0.0283 4; \ \alpha(L)=0.00916 \ 13; \ \alpha(M)=0.00225 \ 4; \ \alpha(N)=0.000553 \ 8; \ \alpha(O)=9.21\times10^{-5} \ 13$                                                                                                                                    |
|                        |                                   | 970.3 2                                                        | 100 19                           | 757.06 6+                                                                                             |                                                            | (M1+E2)            | 0.010 5 | $\alpha(P)=2.95\times10^{-6} 5$<br>$\alpha(K)=0.008 4; \ \alpha(L)=0.0014 5; \ \alpha(M)=0.00031 \ 12; \ \alpha(N)=8.E-5 3;$<br>$\alpha(O)=1.4\times10^{-5} 6; \ \alpha(P)=9.E-7 4$                                                                                      |
| 1815.03                | (6,7 <sup>+</sup> )               | 200 1                                                          |                                  | 1614.70 (5-                                                                                           | -,4 <sup>+</sup> )                                         |                    |         | Mult.: (D+Q) from DCO ratio in (HI,xn $\gamma$ ), $\Delta \pi$ =no from level scheme.                                                                                                                                                                                    |
|                        |                                   | 227.4 2                                                        | 24 3                             | 1587.64 (4,5                                                                                          | 5+)                                                        | E2                 | 0.234   | $\alpha(K)=0.1228 \ I8; \ \alpha(L)=0.0838 \ I3; \ \alpha(M)=0.0213 \ 3; \ \alpha(N)=0.00521 \ 8; \ \alpha(O)=0.000834 \ I2$                                                                                                                                             |
|                        |                                   | 499.7 2                                                        | 100 11                           | 1315.24 (5+                                                                                           | -)                                                         | E2                 | 0.0248  | $\alpha(P)=1.191\times10^{-5} 17$<br>$\alpha(K)=0.0183 3; \ \alpha(L)=0.00495 7; \ \alpha(M)=0.001202 17; \ \alpha(N)=0.000295 5;$<br>$\alpha(O)=4.99\times10^{-5} 7$<br>$\alpha(P)=1.93\times10^{-6} 3$                                                                 |
|                        |                                   | 1057.8 2                                                       | 71 6                             | 757.06 6+                                                                                             |                                                            | (D)                |         | $u(1) = 1.55 \times 10^{-5}$                                                                                                                                                                                                                                             |
| 1852.20                | (7 <sup>-</sup> ,6 <sup>+</sup> ) | 202.3 2<br>237.6 2                                             | 93<br>331                        | 1649.90 (6 <sup>+</sup><br>1614.70 (5 <sup>-</sup>                                                    | -)<br>-,4+)                                                | E2                 | 0.203   | $\alpha(K)=0.1099 \ 16; \ \alpha(L)=0.0702 \ 11; \ \alpha(M)=0.0178 \ 3; \ \alpha(N)=0.00435 \ 7; \ \alpha(O)=0.000699 \ 10 \ \alpha(D)=1.072\times10^{-5} \ 16$                                                                                                         |
| 1015 34                | $(6.7^{+})$                       | 670.6 2<br>327 5 2                                             | 100 9                            | 1181.49 8 <sup>+</sup><br>1587.64 (4.5                                                                | <b>5</b> <sup>+</sup> )                                    |                    |         | $a(\mathbf{r}) = 1.072 \times 10^{-1} 10^{-1}$                                                                                                                                                                                                                           |
| 1913.34                | (0,7)                             | $600.2^{b}$ 2                                                  |                                  | 1307.04 (4, 1315.24 (5 <sup>+</sup>                                                                   | -)                                                         |                    |         |                                                                                                                                                                                                                                                                          |
| 2012.23                | (7,8 <sup>+</sup> )               | 160 <i>I</i><br>198 <i>I</i><br>362.4 <i>2</i><br>397 <i>I</i> |                                  | 1852.20 (7 <sup>-</sup><br>1815.03 (6,7<br>1649.90 (6 <sup>+</sup><br>1614.70 (5 <sup>-</sup>         | 7 <sup>+</sup> )<br>7 <sup>+</sup> )<br>-,4 <sup>+</sup> ) |                    |         |                                                                                                                                                                                                                                                                          |
| 2107.24                | (8,9 <sup>+</sup> )               | 292.2 2                                                        | 100 10                           | 1815.03 (6,7                                                                                          | 7+)                                                        | (E2)               | 0.1065  | $ \begin{aligned} &\alpha(\mathrm{K}) = 0.0652 \ 10; \ \alpha(\mathrm{L}) = 0.0312 \ 5; \ \alpha(\mathrm{M}) = 0.00784 \ 12; \ \alpha(\mathrm{N}) = 0.00192 \ 3; \\ &\alpha(\mathrm{O}) = 0.000312 \ 5 \\ &\alpha(\mathrm{P}) = 6.55 \times 10^{-6} \ 10 \end{aligned} $ |

 $\neg$ 

From ENSDF

|                        | Adopted Levels, Gammas (continued)       |                        |                               |                                           |                    |        |                                                                                                                                                                                                                   |  |  |  |  |
|------------------------|------------------------------------------|------------------------|-------------------------------|-------------------------------------------|--------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                        | $\gamma$ <sup>(180</sup> Pt) (continued) |                        |                               |                                           |                    |        |                                                                                                                                                                                                                   |  |  |  |  |
| E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$                       | $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\dagger}$        | $\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$  | Mult. <sup>‡</sup> | α      | Comments                                                                                                                                                                                                          |  |  |  |  |
| 2107.24                | (8,9+)                                   | 379.9 2                | 25 4                          | 1727.24 (7+)                              | (E2)               | 0.0503 | $\alpha$ (K)=0.0344 5; $\alpha$ (L)=0.01207 17; $\alpha$ (M)=0.00298 5; $\alpha$ (N)=0.000732 11;<br>$\alpha$ (O)=0.0001212 18<br>$\alpha$ (P)=3.55×10 <sup>-6</sup> 5                                            |  |  |  |  |
|                        |                                          | 925.7 2                | 28 4                          | 1181.49 8+                                |                    |        |                                                                                                                                                                                                                   |  |  |  |  |
| 2161.9                 |                                          | 347 <mark>6</mark> 1   |                               | 1815.03 (6,7+)                            |                    |        |                                                                                                                                                                                                                   |  |  |  |  |
|                        |                                          | 980 <sup>ab</sup> 1    | a                             | 1181.49 8+                                |                    |        |                                                                                                                                                                                                                   |  |  |  |  |
| 2168.94                | (9 <sup>-</sup> ,8 <sup>+</sup> )        | 316.7 2                |                               | 1852.20 (7 <sup>-</sup> ,6 <sup>+</sup> ) | E2                 | 0.0839 | $\alpha$ (K)=0.0534 8; $\alpha$ (L)=0.0231 4; $\alpha$ (M)=0.00577 9; $\alpha$ (N)=0.001415 20;<br>$\alpha$ (O)=0.000231 4<br>$\alpha$ (P)=5.41×10 <sup>-6</sup> 8                                                |  |  |  |  |
|                        |                                          | 494.7 2                |                               | 1674.28 10+                               |                    |        |                                                                                                                                                                                                                   |  |  |  |  |
| 2182.92                | (8,9 <sup>+</sup> )                      | 267.5 2                |                               | 1915.34 (6,7 <sup>+</sup> )               | (E2)               | 0.1395 | $\alpha$ (K)=0.0814 <i>12</i> ; $\alpha$ (L)=0.0439 <i>7</i> ; $\alpha$ (M)=0.01106 <i>16</i> ; $\alpha$ (N)=0.00271 <i>4</i> ;<br>$\alpha$ (O)=0.000438 <i>7</i><br>$\alpha$ (P)=8.07×10 <sup>-6</sup> <i>12</i> |  |  |  |  |
|                        |                                          | 367.6 2                |                               | 1815.03 (6,7 <sup>+</sup> )               |                    |        |                                                                                                                                                                                                                   |  |  |  |  |
|                        |                                          | 456.1 2                |                               | 1727.24 (7 <sup>+</sup> )                 |                    |        |                                                                                                                                                                                                                   |  |  |  |  |
| 2198.4?                | (9+)                                     | 471 1                  |                               | $1727.24 (7^+)$                           |                    |        |                                                                                                                                                                                                                   |  |  |  |  |
| 2229.2                 | 12+                                      | 554.8 2                | 100                           | 1674.28 10 <sup>+</sup>                   | E2                 | 0.0193 | $\alpha(K)=0.01455\ 21;\ \alpha(L)=0.00362\ 5;\ \alpha(M)=0.000874\ 13;\ \alpha(N)=0.000215\ 3;$<br>$\alpha(O)=3.66\times10^{-5}\ 6$                                                                              |  |  |  |  |
| 2286 65                | ( <b>2</b> , <b>0</b> )                  | 125 1                  |                               | 2161.0                                    |                    |        | $\alpha(P) = 1.537 \times 10^{-6} 22$                                                                                                                                                                             |  |  |  |  |
| 2280.03                | (0,9)                                    | 179.4 2<br>274.5 2     | 59 <i>18</i><br>100 <i>14</i> | $2107.24 (8,9^+)$<br>$2012.23 (7,8^+)$    | (D)                |        |                                                                                                                                                                                                                   |  |  |  |  |
|                        |                                          | 434.5 <mark>b</mark> 2 |                               | 1852.20 (7-,6+)                           |                    |        |                                                                                                                                                                                                                   |  |  |  |  |
| 2401.6?                |                                          | 1221 <sup>b</sup> 1    | 100                           | 1181.49 8+                                |                    |        |                                                                                                                                                                                                                   |  |  |  |  |
| 2444.34                | (9,10)                                   | 157.7 2                | 31 9                          | 2286.65 (8,9)                             | (D)                |        |                                                                                                                                                                                                                   |  |  |  |  |
|                        |                                          | 282.4 2                | 53 <i>13</i>                  | 2161.9                                    |                    |        |                                                                                                                                                                                                                   |  |  |  |  |
| 0.455.0                | (0.10)                                   | 337.0 2                | 100 19                        | $2107.24 (8,9^+)$                         |                    |        |                                                                                                                                                                                                                   |  |  |  |  |
| 2455.0                 | (9,10)                                   | 286 1                  | 14 4                          | 2168.94 (9,8')<br>$2107.24 (8.0^+)$       | (D)                |        |                                                                                                                                                                                                                   |  |  |  |  |
| 2556.7                 | (11 <sup>-</sup> ,10 <sup>+</sup> )      | 387.8 2                | 100 29                        | $2107.24 (8,9) 2168.94 (9^-,8^+)$         | (D)<br>E2          | 0.0475 | $\alpha$ (K)=0.0327 5; $\alpha$ (L)=0.01125 16; $\alpha$ (M)=0.00278 4; $\alpha$ (N)=0.000681 10; $\alpha$ (O)=0.0001130 16                                                                                       |  |  |  |  |
|                        |                                          |                        |                               |                                           |                    |        | $\alpha(P)=3.39\times10^{-6} 5$                                                                                                                                                                                   |  |  |  |  |
| 2557.98                | $(10,11^+)$                              | 375.1 2                |                               | $2182.92 (8,9^+)$                         |                    |        |                                                                                                                                                                                                                   |  |  |  |  |
| 2626 10                | (10, 11)                                 | 450.7 2                | 20.10                         | $2107.24 (8,9^{\circ})$<br>2444.34 (0.10) | (D)                |        |                                                                                                                                                                                                                   |  |  |  |  |
| 2020.10                | (10,11)                                  | 339.6 2                | 100 19                        | 2286.65 (8,9)                             | (E2)               | 0.0687 | $\alpha$ (K)=0.0450 7; $\alpha$ (L)=0.0179 3; $\alpha$ (M)=0.00446 7; $\alpha$ (N)=0.001093 16; $\alpha$ (O)=0.000180 3                                                                                           |  |  |  |  |
| 27617                  | $(12^{+})$                               | 261 1                  |                               | 2401 69                                   |                    |        | $\alpha(P)=4.60\times10^{-6}$ /                                                                                                                                                                                   |  |  |  |  |
| 2/04./                 | (12)                                     | 536 <i>1</i>           | 25 21                         | 2401.0?<br>2229.2 12 <sup>+</sup>         |                    |        |                                                                                                                                                                                                                   |  |  |  |  |

 $\infty$ 

From ENSDF

# $\gamma(^{180}\text{Pt})$ (continued)

| E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$                  | ${\rm E_{\gamma}}^{\dagger}$  | $I_{\gamma}^{\dagger}$       | $E_f$              | $\mathbf{J}_f^{\pi}$                  | Mult. <sup>‡</sup> | α       | Comments                                                                                                                                                                                                                                                                                               |
|------------------------|-------------------------------------|-------------------------------|------------------------------|--------------------|---------------------------------------|--------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2764.7                 | (12 <sup>+</sup> )                  | 1090.5 2                      | 100 17                       | 1674.28            | 10+                                   | (E2)               | 0.00462 | $\alpha(K)=0.00376\ 6;\ \alpha(L)=0.000658\ 10;\ \alpha(M)=0.0001533\ 22;\ \alpha(N)=3.78\times10^{-5}$                                                                                                                                                                                                |
| 2834.20                | (11,12)                             | 208.0 2                       | 23 5                         | 2626.10            | (10,11)                               | (D)                |         | $\alpha$ (O)=6.68×10 <sup>-6</sup> 10; $\alpha$ (P)=3.96×10 <sup>-7</sup> 6                                                                                                                                                                                                                            |
|                        |                                     | 379 <sup>0</sup><br>389.8 2   | 100 36                       | 2455.0<br>2444.34  | (9,10)<br>(9,10)                      | E2                 | 0.0469  | $\alpha(K)=0.0323 5; \alpha(L)=0.01106 16; \alpha(M)=0.00273 4; \alpha(N)=0.000669 10; \alpha(O)=0.0001111 16 \alpha(D)=2.35\times10^{-6} 5$                                                                                                                                                           |
| 2841.6                 | 14 <sup>+</sup>                     | 612.2 2                       | 100                          | 2229.2             | 12+                                   | E2                 | 0.01538 | $\alpha(\mathbf{r}) = 3.55 \times 10^{-5}$<br>$\alpha(\mathbf{K}) = 0.01180 \ 17; \ \alpha(\mathbf{L}) = 0.00273 \ 4; \ \alpha(\mathbf{M}) = 0.000656 \ 10; \ \alpha(\mathbf{N}) = 0.0001614 \ 23$<br>$\alpha(\mathbf{O}) = 2.77 \times 10^{-5} \ 4; \ \alpha(\mathbf{P}) = 1.249 \times 10^{-6} \ 18$ |
| 2872.7                 | (11,12)                             | 417.7 2                       |                              | 2455.0             | (9,10)                                | (E2)               | 0.0390  | $\alpha(K)=0.0275 \ 4; \ \alpha(L)=0.00876 \ 13; \ \alpha(M)=0.00215 \ 3; \ \alpha(N)=0.000529 \ 8; \\ \alpha(O)=8.81\times10^{-5} \ 13 \\ \alpha(P)=2.86\times10^{-6} \ 4$                                                                                                                            |
| 3006 3                 | $(12\ 13^{+})$                      | 429 <sup>b</sup> 1<br>448 3 2 | 100                          | 2444.34            | (9,10)<br>$(10,11^+)$                 |                    |         |                                                                                                                                                                                                                                                                                                        |
| 3007.8                 | $(12,13^{-})$<br>$(13^{-},12^{+})$  | 451.1 2                       | 100                          | 2556.7             | $(10,11^{-})$<br>$(11^{-},10^{+})$    | E2                 | 0.0320  | $\alpha(K)=0.0230 4; \alpha(L)=0.00682 10; \alpha(M)=0.001667 24; \alpha(N)=0.000410 6; \alpha(O)=6.87\times10^{-5} 10$                                                                                                                                                                                |
| 3050.5                 | (12,13)                             | 216.0 2<br>424.6 2            |                              | 2834.20<br>2626.10 | (11,12)<br>(10,11)                    | (D)                |         | $\alpha(\mathbf{r}) = 2.41 \times 10^{-4} 4$                                                                                                                                                                                                                                                           |
| 3208.8                 | (14 <sup>+</sup> )                  | 367 <i>1</i><br>444.3 2       | 100 20                       | 2841.6<br>2764.7   | 14 <sup>+</sup><br>(12 <sup>+</sup> ) | (E2)               | 0.0333  | $\alpha$ (K)=0.0238 4; $\alpha$ (L)=0.00716 10; $\alpha$ (M)=0.001753 25; $\alpha$ (N)=0.000430 6; $\alpha$ (O)=7.21×10 <sup>-5</sup> 11                                                                                                                                                               |
|                        |                                     | 980 <sup>a</sup> 1            | 100 <sup>a</sup> 10          | 2229.2             | 12+                                   | (E2)               | 0.00570 | $\alpha(P)=2.49\times10^{-6} 4$<br>$\alpha(K)=0.00461 7; \ \alpha(L)=0.000837 12; \ \alpha(M)=0.000196 3; \ \alpha(N)=4.82\times10^{-5} 7; \ \alpha(O)=8.48\times10^{-6} 12$<br>$\alpha(P)=4.86\times10^{-7} 7$                                                                                        |
| 3301.9                 | (13,14)                             | 251.2 2<br>467.8 2            | 13 <i>3</i><br>100 <i>18</i> | 3050.5<br>2834.20  | (12,13)<br>(11,12)                    | E2                 | 0.0292  | $\alpha(K)=0.0212 \ 3; \ \alpha(L)=0.00608 \ 9; \ \alpha(M)=0.001482 \ 21; \ \alpha(N)=0.000364 \ 6; \ \alpha(O)=6.12\times10^{-5} \ 9$                                                                                                                                                                |
| 3361.3                 | (13,14)                             | 488.6 2                       | 100                          | 2872.7             | (11,12)                               | E2                 | 0.0262  | $\begin{array}{l} \alpha(P) = 2.25 \times 10^{-6} \ 4 \\ \alpha(K) = 0.0192 \ 3; \ \alpha(L) = 0.00530 \ 8; \ \alpha(M) = 0.001290 \ 19; \ \alpha(N) = 0.000317 \ 5; \\ \alpha(O) = 5.35 \times 10^{-5} \ 8 \end{array}$                                                                               |
| 3504.9                 | 16 <sup>+</sup>                     | 663.2 2                       | 100                          | 2841.6             | 14+                                   | E2                 | 0.01286 | $\alpha(P)=2.02\times10^{-6} 3$<br>$\alpha(K)=0.00999 \ I4; \ \alpha(L)=0.00220 \ 3; \ \alpha(M)=0.000524 \ 8; \ \alpha(N)=0.0001291 \ I8; \ \alpha(O)=2.22\times10^{-5} \ 4$                                                                                                                          |
| 3507.1                 | (15 <sup>-</sup> ,14 <sup>+</sup> ) | 499.1 2                       | 100                          | 3007.8             | (13 <sup>-</sup> ,12 <sup>+</sup> )   | E2                 | 0.0249  | $\alpha(P)=1.057\times10^{-6} \ 15$<br>$\alpha(K)=0.0183 \ 3; \ \alpha(L)=0.00497 \ 7; \ \alpha(M)=0.001207 \ 17; \ \alpha(N)=0.000297 \ 5; \ \alpha(O)=5.01\times10^{-5} \ 7$                                                                                                                         |
| 3510.2                 | (14,15 <sup>+</sup> )               | 503.9 2                       | 100                          | 3006.3             | (12,13 <sup>+</sup> )                 |                    |         | $\alpha(P) = 1.93 \times 10^{-6} 3$                                                                                                                                                                                                                                                                    |

9

From ENSDF

 $^{180}_{78}\text{Pt}_{102}\text{-}9$ 

# $\gamma(^{180}\text{Pt})$ (continued)

| E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$                  | $E_{\gamma}^{\dagger}$                   | $I_{\gamma}^{\dagger}$        | $\mathbf{E}_{f}$           | $\mathbf{J}_f^{\pi}$                  | Mult. <sup>‡</sup> | α       | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------|-------------------------------------|------------------------------------------|-------------------------------|----------------------------|---------------------------------------|--------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3544.7                 | (14,15)                             | 243 1                                    |                               | 3301.9                     | (13,14)                               | (D)                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3571.6<br>3676.6       | (16 <sup>+</sup> )                  | 494 <i>1</i><br>563.9 2<br>467.9 2       | 100<br>100 <i>13</i>          | 3050.5<br>3007.8<br>3208.8 | (12,13)<br>$(13^-,12^+)$<br>$(14^+)$  | (E2)               | 0.0292  | $\alpha(K)=0.0212 \ 3; \ \alpha(L)=0.00607 \ 9; \ \alpha(M)=0.001481 \ 21; \ \alpha(N)=0.000364 \ 6; \ \alpha(O)=6.12\times10^{-5} \ 9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                        |                                     | 835.0 2                                  | 57 10                         | 2841.6                     | 14+                                   | (E2)               | 0.00787 | $\alpha(P)=2.22\times10^{-6} 4$<br>$\alpha(K)=0.00628 9; \ \alpha(L)=0.001220 \ 17; \ \alpha(M)=0.000287 \ 4; \ \alpha(N)=7.08\times10^{-5} \ 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3832.9                 | (15,16)                             | 531.0 2                                  | 100                           | 3301.9                     | (13,14)                               | E2                 | 0.0214  | $\alpha(O)=1.236\times10^{-5} 18; \ \alpha(P)=6.64\times10^{-7} 10^{-7} 10^{-7} \alpha(K)=0.01600 \ 23; \ \alpha(L)=0.00412 \ 6; \ \alpha(M)=0.000997 \ 14; \ \alpha(N)=0.000245 \ 4; \ \alpha(O)=4.16\times10^{-5} 6^{-7} 6^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-$ |
| 3911.1                 | (15,16)                             | 549.8 2                                  | 100                           | 3361.3                     | (13,14)                               | E2                 | 0.0197  | $\alpha(P)=1.689\times10^{-6}\ 24$<br>$\alpha(K)=0.01484\ 21;\ \alpha(L)=0.00372\ 6;\ \alpha(M)=0.000898\ 13;\ \alpha(N)=0.000221\ 3;$<br>$\alpha(O)=3.75\times10^{-5}\ 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4044.2                 | (17 <sup>-</sup> ,16 <sup>+</sup> ) | 537.1 2                                  | 100                           | 3507.1                     | (15 <sup>-</sup> ,14 <sup>+</sup> )   | E2                 | 0.0208  | $\alpha(P)=1.567\times10^{-6} 22$<br>$\alpha(K)=0.01561 22; \ \alpha(L)=0.00398 6; \ \alpha(M)=0.000963 \ 14; \ \alpha(N)=0.000237 \ 4; \ \alpha(O)=4.02\times10^{-5} \ 6 \ \alpha(P)=1 \ 648\times10^{-6} \ 24$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4063.4<br>4099.7       | (16,17 <sup>+</sup> )<br>(16,17)    | 553.2 2<br>555 1                         | 100<br>100                    | 3510.2<br>3544.7           | (14,15 <sup>+</sup> )<br>(14,15)      | (E2)               | 0.0193  | $\alpha(\mathbf{K}) = 0.01454\ 22;\ \alpha(\mathbf{L}) = 0.00362\ 6;\ \alpha(\mathbf{M}) = 0.000873\ 13;\ \alpha(\mathbf{N}) = 0.000215\ 4;$<br>$\alpha(\mathbf{O}) = 3.65 \times 10^{-5}\ 6$<br>$\alpha(\mathbf{D}) = 1.526 \times 10^{-6}\ 22$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4126.0                 |                                     | 554.5 2<br>618.8 2                       |                               | 3571.6<br>3507.1           | $(15^{-}, 14^{+})$                    |                    |         | $\alpha(P) = 1.530 \times 10^{-6} 25$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4180.9                 | (18 <sup>+</sup> )                  | 505 1                                    | 32 8                          | 3676.6                     | (16 <sup>+</sup> )                    | (E2)               | 0.0242  | $\alpha(K)=0.0179 \ 3; \ \alpha(L)=0.00479 \ 8; \ \alpha(M)=0.001163 \ 18; \ \alpha(N)=0.000286 \ 5; \ \alpha(O)=4.83 \times 10^{-5} \ 8 \ \alpha(D)=1.88 \times 10^{-6} \ 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                        |                                     | 675.8 2                                  | 100 21                        | 3504.9                     | 16+                                   | (E2)               | 0.01234 | $\alpha(K) = 0.00961 \ 14; \ \alpha(L) = 0.00209 \ 3; \ \alpha(M) = 0.000498 \ 7; \ \alpha(N) = 0.0001226 \ 18; \\ \alpha(O) = 2.11 \times 10^{-5} \ 3 \\ \alpha(R) = 1.017 \times 10^{-6} \ 15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4252.7                 | 18+                                 | 576.2 2<br>747 <i>1</i>                  | 55 <i>18</i><br>100 <i>12</i> | 3676.6<br>3504.9           | (16 <sup>+</sup> )<br>16 <sup>+</sup> | E2                 | 0.00994 | $\alpha(\mathbf{K}) = 0.00784 \ 12; \ \alpha(\mathbf{L}) = 0.001609 \ 24; \ \alpha(\mathbf{M}) = 0.000381 \ 6; \ \alpha(\mathbf{N}) = 9.40 \times 10^{-5} \ 14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4420.9                 | (17,18)                             | 588 1                                    | 100                           | 3832.9                     | (15,16)                               | (E2)               | 0.01686 | $\alpha(O)=1.630\times10^{-5} 24; \ \alpha(P)=8.30\times10^{-1} 12$<br>$\alpha(K)=0.01285 \ 19; \ \alpha(L)=0.00306 \ 5; \ \alpha(M)=0.000736 \ 11; \ \alpha(N)=0.000181 \ 3;$<br>$\alpha(O)=3.10\times10^{-5} 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4512.5                 | (17,18)                             | 601.4 2                                  | 100                           | 3911.1                     | (15,16)                               | E2                 | 0.01601 | $\alpha(P)=1.359\times10^{-6}\ 20$<br>$\alpha(K)=0.01225\ 18;\ \alpha(L)=0.00287\ 4;\ \alpha(M)=0.000690\ 10;\ \alpha(N)=0.0001698\ 24$<br>$\alpha(Q)=2\ 91\times10^{-5}\ 4;\ \alpha(P)=1\ 296\times10^{-6}\ 19$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4639.8                 | (19 <sup>-</sup> ,18 <sup>+</sup> ) | 595.6 2                                  | 100                           | 4044.2                     | (17 <sup>-</sup> ,16 <sup>+</sup> )   | E2                 | 0.01637 | $\alpha(G) = 2.91\times10^{-1}$ , $\alpha(L) = 0.200010^{-1}$ , $\alpha(N) = 0.0001746^{-1}$<br>$\alpha(K) = 0.01250^{-1}$ , $\alpha(L) = 0.00295^{-1}$ ; $\alpha(M) = 0.000710^{-1}$ , $\alpha(N) = 0.0001746^{-1}$<br>$\alpha(O) = 2.99\times10^{-5}^{-5}$ ; $\alpha(P) = 1.323\times10^{-6}$ 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4661.1<br>4676.3       | (18,19 <sup>+</sup> )               | 597.7 2<br>550.3 2<br>632 <sup>b</sup> 1 | 100                           | 4063.4<br>4126.0<br>4044.2 | $(16,17^+)$<br>$(17^-,16^+)$          |                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

10

L

# $\gamma(^{180}\text{Pt})$ (continued)

| α(N)=0.0001630 24<br>(N)=0.0001532 22;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (N)=0.0001532 22;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\alpha(N)=9.91\times10^{-5}$ 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (N)=0.0001412 <i>21</i> ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (N)=0.0001375 <i>20</i> ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (N)=0.0001367 <i>20</i> ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (N)=0.0001288 <i>18</i> ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\alpha(N)=9.49\times10^{-5}$ 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (N)=0.0001072 <i>15</i> ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $(\mathbf{N}) = (\mathbf{N}) = ($ |

11

\_

|                                                   | Adopted Levels, Gammas (continued)  |                        |                        |                  |                                     |                    |         |                                                                                                                                                                                                                                                  |  |  |  |  |
|---------------------------------------------------|-------------------------------------|------------------------|------------------------|------------------|-------------------------------------|--------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| $\underline{\gamma}(^{180}\text{Pt})$ (continued) |                                     |                        |                        |                  |                                     |                    |         |                                                                                                                                                                                                                                                  |  |  |  |  |
| $E_i$ (level)                                     | $\mathbf{J}_i^{\pi}$                | $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\dagger}$ | $\mathbf{E}_{f}$ | $\mathbf{J}_f^{\pi}$                | Mult. <sup>‡</sup> | α       | Comments                                                                                                                                                                                                                                         |  |  |  |  |
| 6618.4                                            | (25 <sup>-</sup> ,24 <sup>+</sup> ) | 670.8 2                |                        | 5947.6           | (23 <sup>-</sup> ,22 <sup>+</sup> ) |                    |         |                                                                                                                                                                                                                                                  |  |  |  |  |
| 6935.8                                            | (26 <sup>+</sup> )                  | 757.1 2                | 100                    | 6178.7           | (24 <sup>+</sup> )                  | (E2)               | 0.00966 | $\alpha$ (K)=0.00763 <i>11</i> ; $\alpha$ (L)=0.001555 <i>22</i> ; $\alpha$ (M)=0.000368 <i>6</i> ; $\alpha$ (N)=9.07×10 <sup>-5</sup> <i>13</i><br>$\alpha$ (O)=1.576×10 <sup>-5</sup> <i>22</i> ; $\alpha$ (P)=8.08×10 <sup>-7</sup> <i>12</i> |  |  |  |  |
| 7237.6?                                           |                                     | 712 <sup>b</sup> 1     | 100                    | 6525.6           |                                     |                    |         |                                                                                                                                                                                                                                                  |  |  |  |  |
| 7434.5                                            | (26 <sup>+</sup> )                  | 883 <sup>b</sup> 1     | 100                    | 6551.5           | (24 <sup>+</sup> )                  |                    |         |                                                                                                                                                                                                                                                  |  |  |  |  |

<sup>†</sup> From (HI,xnγ), except where noted.
<sup>‡</sup> From DCO ratios in (HI,xnγ), except where noted. Transitions with measured Q character are adopted here as pure E2.
<sup>#</sup> From <sup>180</sup>Au ε decay.

<sup>(a)</sup> From angular distribution coefficients and electron conversion coefficients in <sup>180</sup>Au  $\varepsilon$  decay. <sup>(b)</sup> From  $\gamma\gamma(\theta)$  in <sup>180</sup>Au  $\varepsilon$  decay.

<sup>a</sup> Multiply placed with intensity suitably divided.
 <sup>b</sup> Placement of transition in the level scheme is uncertain.



<sup>180</sup><sub>78</sub>Pt<sub>102</sub>

|                                                                                  | Legend                                                                                                                                   |
|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Level Scheme (continued)                                                         |                                                                                                                                          |
| Intensities: Type not specified<br>@ Multiply placed: intensity suitably divided | $ I_{\gamma} < 2\% \times I_{\gamma}^{max} $ $ I_{\gamma} < 10\% \times I_{\gamma}^{max} $ $ I_{\gamma} < 10\% \times I_{\gamma}^{max} $ |
|                                                                                  | $I_{\gamma} > 10\% \times I_{\gamma}^{\text{max}}$<br>                                                                                   |



Legend



 $^{180}_{78}{\rm Pt}_{102}$ 





 $^{180}_{78}{\rm Pt}_{102}$ 



 $^{180}_{78}{\rm Pt}_{102}$ 



 $^{180}_{78}{\rm Pt}_{102}$