¹⁸⁰Ir ε decay 1994Ki01,1992Bo19,1973HaVR

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	E. A. Mccutchan	NDS 126, 151 (2015)	1-Feb-2015

Parent: ¹⁸⁰Ir: E=0.0; $J^{\pi}=(5^+)$; $T_{1/2}=1.5 \text{ min } l$; $Q(\varepsilon)=6384 \ 27$; $\%\varepsilon+\%\beta^+$ decay=100.0

1994Ki01: ¹⁸⁰Ir activity produced by ¹⁶⁶Er(¹⁹F,5n), E(¹⁹F)=108 MeV. Measured E γ , I γ , $\gamma\gamma$ coin, $\gamma\gamma(\theta)$, I(ce), and ce- γ coin using CAESAR array consisting of 6 Compton-suppressed HPGe detectors and a superconducting solenoid electron spectrometer operated in lens mode.

1992Bo19: ¹⁸⁰Ir activity produced by ¹⁴⁸Nd(³⁶Ar,p3n), E(³⁶Ar)=240 MeV. Measured E γ , I γ , $\gamma\gamma$ coin, E x-ray, I x-ray, γ -x-ray coin using two Ge detectors.

1973HaVR: ¹⁸⁰Ir activity produced by ¹⁶⁹Tm(¹⁶O,5n), E(¹⁶O)=125 MeV. Measured E γ , I γ , $\gamma\gamma$ coin using Ge(Li) detectors.

A total energy release of 6430 keV 160 for this decay scheme is calculated by the RADLST code, in agreement with the Q value of 6382 keV 27. However, due to the large Q value and the experimental \approx 2 MeV γ -ray energy cut-off, the decay scheme is considered to be incomplete.

Additional information 1.

 α : Additional information 2.

¹⁸⁰Os Levels

1992Bo19 propose a 8^+ , 1256 level (depopulated by a 461.7 γ) and a 7⁻, 1862 level (depopulated by 257.6 γ , 604.5 γ , and 1066.6 γ) which are not observed by 1994Ki01. All depopulating γ 's (with the exception of the 1066.6 γ) are given alternate placements in 1994Ki01. As the direct population of 7⁻ and 8⁺ states from a (4,5) parent is unlikely, the level scheme of 1994Ki01 is adopted here.

E(level) [†]	J ^{π‡}	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	J ^{π‡}	E(level) [†]	J ^{π‡}
0.0#	0^{+}	795.06 [#] 16	6+	1052.82 [@] 22	4+	1405.8 ^{&} 3	5+
132.1 [#] 2	2^{+}	831.00 [@] 18	2^{+}	1196.94 ^{&} 19	4^{+}	1514.98 <i>21</i>	4-
408.65 [#] 13	4+	870.44 ^{&} 19	2^{+}	1375.35 25	3-	1515.6 4	4+
736.3 [@] 4	0^+	1022.80 ^{&} 18	3+	1379.02 [@] 23	6+	1604.1 <i>3</i>	5-

[†] From a least-squares fit to $E\gamma$'s by evaluator.

[‡] From the Adopted Levels.

Band(A): g.s. band.

^(a) Band(B): $K^{\pi} = 0^+$ band.

& Band(C): $K^{\pi} = 2^+ \gamma$ -vibrational band.

ε, β^+ radiations

E(decay)	E(level)	Ιβ ⁺ #	Ie#	$\log ft^{\ddagger}$	$I(\varepsilon + \beta^+)^{\dagger \#}$	Comments
$(4.78 \times 10^3 \ 3)$	1604.1	1.3 4	1.4 4	6.52 14	2.7 8	av $E\beta$ =1700 13; ε K=0.416 5; ε L=0.0692 8; ε M+=0.02162 23
$(4.87 \times 10^3 \ 3)$	1515.6	4.7 9	4.6 8	6.01 9	9.3 17	av Eβ=1740 13; εK=0.402 5; εL=0.0669 7; εM+=0.02090 22
$(4.87 \times 10^3 \ 3)$	1514.98	3.3 2	3.1 2	6.18 4	6.4 4	av Eβ=1741 13; εK=0.402 5; εL=0.0669 7; εM+=0.02089 22
$(4.98 \times 10^3 \ 3)$	1405.8	2.0 4	1.8 4	6.44 10	3.8 8	av Eβ=1791 13; εK=0.386 4; εL=0.0641 7; εM+=0.02002 22
$(5.00 \times 10^3 \ 3)$	1379.02	0.96 21	0.84 19	6.77 11	1.8 4	av Eβ=1803 13; εK=0.382 4; εL=0.0634 7; εM+=0.01981 21
$(5.01 \times 10^3 \ 3)$	1375.35	3.3 2	2.8 1	6.25 4	6.1 3	av Eβ=1805 13; εK=0.381 4; εL=0.0633 7;

Continued on next page (footnotes at end of table)

			180 Ir ε	decay 1	994Ki01,1992	Bo19,1973HaVR (continued)	
					ϵ, β^+ radiations	(continued)	
E(decay)	E(level)	Iβ ⁺ #	Ie#	Log ft [‡]	$I(\varepsilon + \beta^+)^{\dagger \#}$	Comments	
						εM+=0.01978 21	
$(5.19 \times 10^3 \ 3)$	1196.94	7.2 10	5.5 7	5.99 7	12.7 17	av E β =1887 13; ε K=0.356 4; ε L=0.0590 7; ε M+=0.01844 20	
$(5.33 \times 10^3 \ 3)$	1052.82	6.7 5	4.6 3	6.09 5	11.3 8	av Eβ=1954 13; εK=0.336 4; εL=0.0558 6; εM+=0.01742 19	
$(5.36 \times 10^3 \ 3)$	1022.80	4.6 7	3.1 5	6.26 8	7.7 12	av Eβ=1967 13; εK=0.332 4; εL=0.0551 6; εM+=0.01721 19	
$(5.51 \times 10^3 \ 3)$	870.44	2.8 11	1.7 6	6.55 17	4.5 17	av Eβ=2038 13; εK=0.313 4; εL=0.0519 6; εM+=0.01620 18	
$(5.55 \times 10^3 \ 3)$	831.00	4.6 7	2.8 4	6.34 8	7.4 11	av E β =2056 13; ε K=0.308 4; ε L=0.0511 6; ε M+=0.01594 18	
$(5.59 \times 10^3 \ 3)$	795.06	1.4 6	0.9 4	6.86 20	2.3 10	av E β =2073 13; ε K=0.304 4; ε L=0.0503 6; ε M+=0.01572 17	
$(5.98 \times 10^3 \ 3)$	408.65	17 3	7.9 13	5.95 8	25 4	av E β =2252 13; ε K=0.261 3; ε L=0.0432 5; ε M+=0.01348 15	

[†] From an intensity balance at each level. [‡] Due to the large Q value (6.4 MeV) of the decay and the experimental \approx 2 MeV γ -ray energy cut-off, the decay scheme is considered incomplete. The log ft values should therefore be considered lower limits.

[#] Absolute intensity per 100 decays.

¹⁸⁰Ir ε decay **1994Ki01,1992Bo19,1973HaVR** (continued)

 $\gamma(^{180}\text{Os})$

 $I\gamma$ normalization: intensity balance at 131 level suggests no direct feeding to this level. Decay scheme normalization deduced by evaluator assuming no direct feeding to g.s. and 131 level, and using $I(\gamma+ce)(g.s.+131 \text{ level})$, excluding 131γ)=100%.

1973HaVR observe tentative unplaced transitions of 846.0 5 with $I\gamma$ =5.8 6, 1014.0 5 with $I\gamma$ =2.6 3, and 1330.3 5 with $I\gamma$ =10.4 6. These transitions are not observed by 1994Ki01 or 1992Bo19, and thus, not included in the adopted gammas.

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger c}$	E_i (level)	J_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [#]	α	Comments
94.5 ^{&}	≈0.4 ^{&}	831.00	2+	736.3	0^{+}	[E2]	5.49	$\alpha(K)=0.856 \ 12; \ \alpha(L)=3.50 \ 5; \ \alpha(M)=0.894 \ 13; \ \alpha(N)=0.214 \ 3; \ \alpha(O)=0.0316 \ 5; \ \alpha(P)=9.62\times10^{-5} \ 14$
132.1 <i>1</i>	68 <i>15</i>	132.1	2+	0.0	0+	E2	1.464	$\alpha(K)=0.472\ 7;\ \alpha(L)=0.748\ 11;\ \alpha(M)=0.191\ 3;\ \alpha(N)=0.0458\ 7;\ \alpha(O)=0.00680\ 10$ $\alpha(P)=4.34\times10^{-5}\ 7$ I_{γ} : from intensity balance at 132 level assuming no ε feeding to this level. Others: $I_{\gamma}=84.6\ 20\ (1994\text{Ki}01),\ I_{\gamma}=45\ 2\ (1992\text{B}019),\ \text{and}\ I_{\gamma}=95\ 5\ (1973\text{LaZC}).$ $\alpha(L)\exp=0.737\ 24,\ \alpha(M)\exp=0.186\ 6\ (1994\text{Ki}01).$
222.0 ^{&}	1.6 ^{&} 3	1052.82	4+	831.00	2+	[E2]	0.235	α (K)=0.1292 <i>18</i> ; α (L)=0.0798 <i>12</i> ; α (M)=0.0200 <i>3</i> ; α (N)=0.00482 <i>7</i> ; α (O)=0.000733 <i>11</i> α (P)=1.232×10 ⁻⁵ <i>18</i>
257.9 ^{&}	0.43 ^{&} 16	1052.82	4+	795.06	6+	[E2]	0.1450	α (K)=0.0873 <i>13</i> ; α (L)=0.0438 <i>7</i> ; α (M)=0.01092 <i>16</i> ; α (N)=0.00263 <i>4</i> ; α (O)=0.000404 α (P)=8.55×10 ⁻⁶ <i>12</i> E _{γ} : placement from 1994Ki01. A 257.6 <i>3</i> transition with I γ =0.8 <i>2</i> is placed by 1992Bo10 from a 7 ⁻ level at 1861
276.5 1	100.0 16	408.65	4+	132.1	2+	E2	0.1169	$\alpha(K)=0.0728 \ 11; \ \alpha(L)=0.0334 \ 5; \ \alpha(M)=0.00831 \ 12; \ \alpha(N)=0.00200 \ 3; \ \alpha(O)=0.000309 \ 5 \ \alpha(P)=7.22\times10^{-6} \ 11 \ \alpha(K)\exp=0.073 \ 3, \ \alpha(L)\exp=0.033 \ 2, \ \alpha(M)\exp=0.0081 \ 4 \ (1994Ki01).$
318.1 ^{&}	1.1 ^{&} 2	1514.98	4-	1196.94	4+	[E1]	0.0213	$\alpha(K)=0.01768\ 25;\ \alpha(L)=0.00277\ 4;\ \alpha(M)=0.000632\ 9;\ \alpha(N)=0.0001531\ 22;\ \alpha(O)=2.57\times10^{-5}\ 4$
326.3 2	1.1 4	1379.02	6+	1052.82	4+	[E2]	0.0714	$\alpha(K) = 0.0477 \ 7; \ \alpha(L) = 0.0180 \ 3; \ \alpha(M) = 0.00443 \ 7; \ \alpha(N) = 0.001070 \ 16; \alpha(O) = 0.0001672 \ 24 \alpha(P) = 4.85 \times 10^{-6} \ 7$
327.0 ^{&}	1.1 ^{&} 4	1196.94	4+	870.44	2+	[E2]	0.0709	α (K)=0.0474 7; α (L)=0.0179 3; α (M)=0.00440 7; α (N)=0.001061 15; α (O)=0.0001659 24 α (P)=4.82×10 ⁻⁶ 7
352.3 ^{&}	3.2 ^{&} 2	1375.35	3-	1022.80	3+	[E1]	0.01675	α (K)=0.01394 20; α (L)=0.00217 3; α (M)=0.000494 7; α (N)=0.0001197 17; α (O)=2.02×10 ⁻⁵ 3 α (P)=1.330×10 ⁻⁶ 19
383.1 ^{&}	0.4 ^{&} 1	1405.8	5+	1022.80	3+	[E2]	0.0455	$\alpha(K)=0.0320 \ 5; \ \alpha(L)=0.01023 \ 15; \ \alpha(M)=0.00250 \ 4; \ \alpha(N)=0.000603 \ 9; \\ \alpha(O)=9.54\times10^{-5} \ 14 \\ \alpha(P)=3.32\times10^{-6} \ 5$

 $\boldsymbol{\omega}$

From ENSDF

					180 Ir ε d	lecay 1994Ki)1,1992Bo19	,1973HaVR (continued)						
	γ ⁽¹⁸⁰ Os) (continued)													
E_{γ}^{\dagger}	Ι _γ ‡ <i>C</i>	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{\boldsymbol{b}}$	α	Comments						
386.4 1	12.0 6	795.06	6+	408.65 4+	E2		0.0444	$\alpha(K)=0.0314 5; \ \alpha(L)=0.00993 \ 14; \ \alpha(M)=0.00242 \ 4; \ \alpha(N)=0.000585 \ 9; \ \alpha(O)=9.27\times10^{-5} \ 13 \ \alpha(P)=3.26\times10^{-6} \ 5 \ I_{\gamma}:$ weighted average of values from 1994Ki01 and 1992Bo19. Other: $I_{\gamma}=6.2 \ 6 \ (1973HaVR).$ $\alpha(L)exp=0.0097 \ 4, \ \alpha(M)exp=0.0032 \ 11 \ (1994Ki01).$						
401.9 ^{&}	1.0 ^{&} 2	1196.94	4+	795.06 6+	[E2]		0.0399	α (K)=0.0285 4; α (L)=0.00870 13; α (M)=0.00212 3; α (N)=0.000511 8; α (O)=8.13×10 ⁻⁵ 12 α (P)=2.98×10 ⁻⁶ 5						
407.5 ^{&}	1.4 ^{&} 1	1604.1	5-	1196.94 4+	E1		0.01201	$\alpha(K)=0.01002 \ 14; \ \alpha(L)=0.001539 \ 22; \ \alpha(M)=0.000351 \ 5; \ \alpha(N)=8.50\times10^{-5} \ 12 \ \alpha(O)=1.438\times10^{-5} \ 21; \ \alpha(P)=9.67\times10^{-7} \ 14 \ \alpha(K)\exp\{0.014 \ (1994Ki01).$						
422.3 &	0.9 ^{&} 3	831.00	2+	408.65 4+	E2		0.0350	α(K)=0.0254 4; α(L)=0.00738 11; α(M)=0.00179 3; α(N)=0.000433 6; α(O)=6.91×10-5 10 α(P)=2.66×10-6 4 α(K)exp≤0.03 (1994Ki01). Mult.: E1 or E2 from α(K)exp, ΔJ=2 from level scheme requires E2.						
461.6 ^{&}	1.1 ^{&} 2	870.44	2+	408.65 4+	E2		0.0278	α(K)=0.0206 3; α(L)=0.00554 8; α(M)=0.001337 19; α(N)=0.000324 5; α(O)=5.20×10-5 8 α(P)=2.17×10-6 3 α(K)exp≤0.025 (1994Ki01). Mult.: E1 or E2 from α(K)exp, ΔJ=2 from level scheme requires E2. Eγ: placement from 1994Ki01. A 461.7 4 transition with Iγ=1.3 5 is placed by 1992Bo19 from a 8+ level at 1256.						
492.2 2	6.5 4	1514.98	4-	1022.80 3+	E1+M2	+0.23 +10-9	0.018 10	$\alpha(K)=0.015 \ 8; \ \alpha(L)=0.0026 \ 16; \ \alpha(M)=0.0006 \ 4; \ \alpha(N)=0.00015 \ 9; \ \alpha(O)=2.5\times10^{-5} \ 15 \ \alpha(P)=1.8\times10^{-6} \ 11 \ \alpha(K)\exp=0.005 \ 3 \ (1994Ki01). \ A_2=+0.06 \ 11. \ \delta: \ Other: \ 0.00 \ 9 \ from \ \alpha(K)exp.$						
505.0 ^{&}	3.4 ^{&} 2	1375.35	3-	870.44 2+	E1		0.00750	$\alpha(K)=0.00628 \ 9; \ \alpha(L)=0.000948 \ 14; \ \alpha(M)=0.000216 \ 3; \ \alpha(N)=5.23\times10^{-5} \ 8; \ \alpha(O)=8.89\times10^{-6} \ 13 \ \alpha(P)=6.15\times10^{-7} \ 9 \ \alpha(K)\exp{\leq}0.008 \ (1994Ki01).$						
544.3 ^{&}	2.7 ^{&} 2	1375.35	3-	831.00 2+	E1		0.00640	$\begin{aligned} &\alpha(\mathrm{K}) = 0.00536 \ 8; \ \alpha(\mathrm{L}) = 0.000805 \ 12; \ \alpha(\mathrm{M}) = 0.000183 \ 3; \ \alpha(\mathrm{N}) = 4.44 \times 10^{-5} \\ &7; \ \alpha(\mathrm{O}) = 7.56 \times 10^{-6} \ 11 \\ &\alpha(\mathrm{P}) = 5.27 \times 10^{-7} \ 8 \\ &\alpha(\mathrm{K}) \exp = 0.0057 \ 13 \ (1994 \mathrm{Ki}01). \end{aligned}$						

4

L

1					180 Ir ε decay	1994Ki01,19	92Bo19,1973F	HaVR (continued)
						$\gamma(^{180}\text{Os})$	(continued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{\boldsymbol{b}}$	α	Comments
583.9 3	1.9 5	1379.02	6+	795.06 6+	E0+M1+E2	-1.6 +3-4	0.059 ^{<i>a</i>} 10	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0191\ 23;\ \alpha(\mathbf{L}) = 0.0036\ 3;\ \alpha(\mathbf{M}) = 0.00084\ 7;\ \alpha(\mathbf{N}) = 0.000204\\ &16;\ \alpha(\mathbf{O}) = 3.4 \times 10^{-5}\ 3\\ &\alpha(\mathbf{P}) = 2.1 \times 10^{-6}\ 3\\ &\alpha(\mathbf{K}) \exp = 0.059\ 10\ (1994\text{Ki}01).\\ &A_2 = +0.05\ 9,\ A_4 = +0.09\ 9. \end{aligned}$
604.1 ^{&}	2.0 ^{&} 2	736.3	0+	132.1 2+	E2		0.01452	α(K)=0.01127 16; α(L)=0.00249 4; α(M)=0.000592 9; α(N)=0.0001434 20; α(O)=2.35×10-5 4 α(P)=1.206×10-6 17 A2=+0.5 3, A4=+1.1 3. Mult.: Q from γγ(θ), Δπ=no from level scheme. Eγ: placement from 1994Ki01. A 604.5 5 transition with Iγ=1.3 4 is placed by 1992Bo19 from a 7- level at 1861.
610.7 ^{&}	1.4 ^{&} 6	1405.8	5+	795.06 6+	M1+E2	+4 1	0.0157 11	$\alpha(K)=0.0123 \ 10; \ \alpha(L)=0.00258 \ 12; \ \alpha(M)=0.00061 \ 3; \ \alpha(N)=0.000148 \ 7; \ \alpha(O)=2.44\times10^{-5} \ 12 \ \alpha(P)=1.33\times10^{-6} \ 11 \ \alpha(K)\exp\leq 0.011 \ (1994Ki01). \ A_{2}=-0.2 \ 2 \ A_{2}=-0.2 \ 2$
614.1 <i>3</i>	3.9 5	1022.80	3+	408.65 4+	E2		0.01399	$\begin{aligned} \alpha(\mathbf{K}) &= 0.01088 \ 16; \ \alpha(\mathbf{L}) = 0.00238 \ 4; \ \alpha(\mathbf{M}) = 0.000565 \ 8; \\ \alpha(\mathbf{N}) &= 0.0001369 \ 20; \ \alpha(\mathbf{O}) = 2.25 \times 10^{-5} \ 4 \\ \alpha(\mathbf{P}) &= 1.165 \times 10^{-6} \ 17 \\ \alpha(\mathbf{K}) &= \mathbf{x}_0 \leq 0.013 \ (1994 \text{Ki}01). \\ \mathbf{A}_2 &= \pm 0.03 \ 13 \ \mathbf{A}_4 = -0.17 \ 15 \end{aligned}$
644.2 3	17.2 10	1052.82	4+	408.65 4+	E0+M1+E2	-3.5 +5-7	0.120 ^{<i>a</i>} 5	$\begin{aligned} \alpha(\mathbf{K}) &= 0.0112 \ 5; \ \alpha(\mathbf{L}) = 0.00227 \ 7; \ \alpha(\mathbf{M}) = 0.000533 \ 15; \\ \alpha(\mathbf{N}) &= 0.000130 \ 4; \ \alpha(\mathbf{O}) = 2.15 \times 10^{-5} \ 7 \\ \alpha(\mathbf{P}) &= 1.22 \times 10^{-6} \ 6 \\ \alpha(\mathbf{K}) &= 0.098 \ 5; \ \alpha(\mathbf{L}) &= 0.0179 \ 9 \ \alpha(\mathbf{M}) &= 0.0044 \ 7 \\ (1994 \text{Ki}01). \\ \mathbf{A}_2 &= -0.02 \ 5; \ \mathbf{A}_4 &= +0.16 \ 5. \end{aligned}$
644.8 [@] 5	10 [@] 3	1515.6	4+	870.44 2+	[E2]		0.01252	$\alpha(K)=0.00981$ 14; $\alpha(L)=0.00208$ 3; $\alpha(M)=0.000493$ 7; $\alpha(N)=0.0001195$ 17; $\alpha(O)=1.97\times10^{-5}$ 3 $\alpha(P)=1.051\times10^{-6}$ 15 E_{γ} : 1994Ki01 report observation of a 4 ⁺ level at 1515, however, no depopulating transitions from such a level are given in their Table 5.
684.9 [@] 4	7.6 [@] 7	1515.6	4+	831.00 2+	[E2]		0.01095	$\begin{aligned} &\alpha(K) = 0.00864 \ 13; \ \alpha(L) = 0.001773 \ 25; \ \alpha(M) = 0.000418 \ 6; \\ &\alpha(N) = 0.0001014 \ 15 \\ &\alpha(O) = 1.678 \times 10^{-5} \ 24; \ \alpha(P) = 9.27 \times 10^{-7} \ 13 \\ &E_{\gamma}: \ 1994 Ki01 \ report \ observation \ of \ a \ 4^+ \ level \ at \ 1515, \ however, \ no \ depopulating \ transitions \ from \ such \ a \ level \ are \ given \ in \ their \ Table \ 5 \end{aligned}$
698.9 2	22.1 11	831.00	2+	132.1 2+	E0+M1+E2	<-9	0.0498 ^{<i>a</i>} 22	α(K)=0.016 8; α(L)=0.0027 10; α(M)=0.00061 22; α(N)=0.00015 6; α(O)=2.5×10 ⁻⁵ 10

S

 $^{180}_{76}\mathrm{Os}_{104}\text{-}5$

L

						180 Ir ε decay	1994Ki01,199	92Bo19,1973H	aVR (continued)
							$\gamma(^{180}\text{Os})$	(continued)	
E_{γ}^{\dagger}	Ι _γ ‡ <i>с</i>	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\boldsymbol{b}}$	α	Comments
736.3		736.3	0+	0.0	0+	ЕО			$\alpha(P)=1.8\times10^{-6} \ 9$ $\alpha(K)\exp=0.0412 \ 14, \ \alpha(L)\exp=0.0070 \ 17 \ \alpha(M)\exp=0.0016 \ 4$ (1994Ki01). $A_2=+0.02 \ 9, \ A_4=+0.28 \ 9.$ $E_{\gamma}: \ from \ 1994Ki01.$
738.2	4.5 4	870.44	2+	132.1	2+	E0+M1+E2	+5.4 +36-17	0.0463 ^{<i>a</i>} 42	$\alpha'(K)=0.0078 5; \alpha(L)=0.00151 7; \alpha(M)=0.000355 14;$ $\alpha(N)=8.6\times10^{-5} 4; \alpha(O)=1.44\times10^{-5} 6$ $\alpha(P)=8.4\times10^{-7} 6$ $\alpha(K)\exp=0.041 4, \alpha(L)\exp=0.0053 14 (1994Ki01).$ $\Delta_{2}=-0.18 14 \Delta_{4}=+0.28 14$
788.3 2	17 3	1196.94	4+	408.65	4+	E0+M1+E2	+1.3 <i>I</i>	0.0154 ^{<i>a</i>} 13	$\alpha(K)=0.0104 5; \ \alpha(L)=0.00176 6; \ \alpha(M)=0.000407 \ 14; \ \alpha(N)=9.9\times10^{-5} 4; \ \alpha(O)=1.69\times10^{-5} 6 \ \alpha(P)=1.16\times10^{-6} 5 \ I_{\gamma}: \text{ weighted average of values from 1994Ki01 and 1992Bo19.} Other: I_{\gamma}=9.1 9 (1973HaVR). \ \alpha(K)=xp=0.0154 \ 13 (1994Ki01). \ A_{\gamma}=-0.15 \ 8, \ A_{4}=+0.09 \ 9.$
809.0 4	3.2 14	1604.1	5-	795.06	6+	E1+M2	+0.10 4	0.0034 5	α(K)=0.0028 4; α(L)=0.00042 7; α(M)=9.6×10-5 15; α(N)=2.3×10-5 4; α(O)=4.0×10-6 7 α(P)=2.9×10-7 5 α(K)exp=0.015 3 (1994Ki01). Α2=-0.19 15. δ: Other: 0.70 15 from α(K)exp.
831.5 ^{&}	0.8 ^{&} 3	831.00	2+	0.0	0^+	[E2]		0.00723	$\alpha(K)=0.00582 \ 9; \ \alpha(L)=0.001085 \ 16; \ \alpha(M)=0.000253 \ 4; \ \alpha(N)=6.15\times10^{-5} \ 9; \ \alpha(O)=1.030\times10^{-5} \ 15 \ \alpha(O)=0.000253 \ 4; $
870.5 <i>3</i>	17.6 4	870.44	2+	0.0	0+	E2		0.00657	$\alpha(K) = 0.00531 \ 8; \ \alpha(L) = 0.000972 \ 14; \ \alpha(M) = 0.000226 \ 4; \\ \alpha(N) = 5.50 \times 10^{-5} \ 8; \ \alpha(O) = 9.23 \times 10^{-6} \ 13 \\ \alpha(P) = 5.70 \times 10^{-7} \ 8 \\ \alpha(K) \exp = 0.0052 \ 5 \ (1994 \text{Ki} 01)$
890.7 2	21.0 17	1022.80	3+	132.1	2+	M1+E2	+8.8 +27-17	0.00638 11	$\alpha(K) = 0.00517 \ 9; \ \alpha(L) = 0.000933 \ 15; \ \alpha(M) = 0.000217 \ 4; \alpha(N) = 5.28 \times 10^{-5} \ 9; \ \alpha(O) = 8.87 \times 10^{-6} \ 14 \alpha(P) = 5.56 \times 10^{-7} \ 10 \alpha(K) = 0.0049 \ 3, \ \alpha(L) = 0.0008 \ 2 \ (1994 \text{Ki}01). A_2 = -0.11 \ 6, \ A_4 = -0.11 \ 6. \delta; \ Other; >6 \ from \ \alpha(K) = p.$
920.9 &	3.0 ^{&} 2	1052.82	4+	132.1	2+	[E2]		0.00586	$\alpha(K)=0.00475 7; \alpha(L)=0.000851 12; \alpha(M)=0.000198 3; \alpha(N)=4.81\times10^{-5} 7; \alpha(O)=8.09\times10^{-6} 12 \alpha(P)=5.10\times10^{-7} 8 A_2=+0.10 25.$
967.1 <mark>&</mark>	0.45 ^{&} 11	1375.35	3-	408.65	4+	[E1]		0.00207	$\alpha(K)=0.001744\ 25;\ \alpha(L)=0.000252\ 4;\ \alpha(M)=5.70\times10^{-5}\ 8;$

6

L

					180 Ir ε de	cay 1994Ki01	,1992Bo19,19	73HaVR (continued)				
γ ⁽¹⁸⁰ Os) (continued)												
${\rm E_{\gamma}}^{\dagger}$	Ι _γ ‡ <i>C</i>	E_i (level)	\mathbf{J}_i^{π}	E _f	J_f^{π} Mult. [#]	δ^{b}	α	Comments				
								α (N)=1.387×10 ⁻⁵ 20; α (O)=2.38×10 ⁻⁶ 4 α (P)=1.753×10 ⁻⁷ 25				
969.9 ^{&}	0.25 ^{&} 11	1379.02	6+	408.65	4 ⁺ [E2]		0.00528	$\alpha(K)=0.00430\ 6;\ \alpha(L)=0.000755\ 11;\ \alpha(M)=0.0001751\ 25;\ \alpha(N)=4.26\times10^{-5}\ 6\ \alpha(O)=7.18\times10^{-6}\ 10;\ \alpha(P)=4.61\times10^{-7}\ 7$				
997.0 <i>4</i>	5.4 13	1405.8	5+	408.65	4+ M1+E2	-2.4 4	0.0059 4	I _γ : from 1994Ki01. Others: Iγ=7.3 7 (1973HaVR). α (K)=0.0049 3; α (L)=0.00082 4; α (M)=0.000189 9; α (N)=4.60×10 ⁻⁵ 23; α (O)=7.8×10 ⁻⁶ 4 α (D)=5.2×10 ⁻⁷ 4				
1064.7 <i>4</i>	7.5 5	1196.94	4+	132.1	2 ⁺ E2		0.00439	$\alpha(P)=3.5\times10^{-7} 4$ $\alpha(K)\exp\approx0.004 (1994Ki01).$ $A_{2}=-0.36 I9, A_{4}=-0.05 I2.$ $\alpha(K)=0.00359 5; \alpha(L)=0.000612 9; \alpha(M)=0.0001414 20;$ $\alpha(N)=3.44\times10^{-5} 5; \alpha(O)=5.83\times10^{-6} 9$ $\alpha(P)=3.85\times10^{-7} 6$				
1106.4 <i>4</i>	4.6 4	1514.98	4-	408.65	4+ E1+M2	+0.17 +4-0	0.0022 3	$\begin{aligned} & \alpha(X) = 0.00110^{-5} & 3.00000000000000000000000000000000000$				
1195.4 ^{&}	0.6 ^{&} 3	1604.1	5-	408.65	4 ⁺ E1(+M2)	+0.1 3	0.0016 <i>21</i>	α (K)exp=0.0025 <i>11</i> (1994Ki01). A_2 =+0.14 <i>11</i> . δ : Other: 0.28 <i>13</i> from α (K)exp. α (K)=0.0013 <i>17</i> ; α (L)=0.0002 <i>3</i> ; α (M)=4.E-5 <i>7</i> ; α (N)=1 1×10 ⁻⁵ <i>16</i> ; α (Q)=2 E 6 <i>3</i> .				
1243.0 ^{&}	1.8 ^{&} 1	1375.35	3-	132.1	2 ⁺ [E1]		1.35×10 ⁻³	$\alpha(N)=1.1\times10^{-7} 21$ Mult., δ : from the Adopted Gammas. $\alpha(K)=0.001113 \ I6; \ \alpha(L)=0.0001589 \ 23; \ \alpha(M)=3.59\times10^{-5} \ 5; \ \alpha(N)=8.73\times10^{-6} \ I3$ $\alpha(O)=1.505\times10^{-6} \ 21; \ \alpha(P)=1.126\times10^{-7} \ I6$				

[†] Weighted average of values from 1994Ki01, 1992Bo19, and 1973HaVR, uncertainties for 1994Ki01 assumed similar to those of 1992Bo19.

[±] Weighted average of values from 1994Ki01, 1992Bo19, and 1973HaVR, except where noted.
 [#] From conversion electron data in 1994Ki01, except where noted.

[@] From 1992Bo19. [&] From 1994Ki01.

 \neg

^{*a*} From sum of $\alpha(K)$ exp, $\alpha(L)$ exp, and $\alpha(M)$ exp.

 $^{180} {\rm Ir} \, \varepsilon \, {\rm decay}$ 1994Ki01,1992Bo19,1973HaVR (continued)

 $\gamma(^{180}\text{Os})$ (continued)

^{*b*} From $\gamma\gamma(\theta)$ in 1994Ki01. ^{*c*} For absolute intensity per 100 decays, multiply by 0.52 *3*.

9

 $^{180}_{76}\mathrm{Os}_{104}\text{-}9$

From ENSDF

 $^{180}_{76}\mathrm{Os}_{104}\text{-}9$

¹⁸⁰Ir ε decay 1994Ki01,1992Bo19,1973HaVR

¹⁸⁰₇₆Os₁₀₄