		_			History	_	
		Тур	e	Author	Cit	ation	Literature Cutoff Date
		Full Eval	uation	E. A. Mccutchan	NDS 126,	151 (2015)	1-Feb-2015
$Q(\beta^{-}) = -6384 \ 27$ S(2n)=16961 21; α : Additional inf	7; S(n)= S(2p)= Formatio	9414 23; S(p) 8531 22 (201 on 1.	=5066 <i>30</i> 2Wa38).	<i>Q</i> ; Q(α)=3850 <i>30</i>	2012Wa38		
				-	180Os Levels	8	
				Cross Ret	ference (XR	EF) Flags	
		A B C D	¹⁸⁰ Ir ε α ¹⁸⁴ Pt α ⁴⁸ Ti(¹³⁶ ¹⁵⁰ Nd(³)	lecay decay Xe,4nγ) ⁶ S,6nγ), ¹⁵⁰ Nd(³⁴ S,	Ε F G ,4nγ)	¹⁵⁰ Nd(³⁶ S,6 ¹⁶⁶ Er(¹⁸ O,4 ¹⁶⁹ Tm(¹⁴ N,	$(5n\gamma)$: delayed $(n\gamma)$, $(168 \text{Er}(16 \text{O}, 4n\gamma))$ $(3n\gamma)$
E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	_		C	Comments
0.0@	0+	21.5 min 4	ABCDEF	G $\%\varepsilon + \%\beta^+ = 100$ $T_{1/2}$: weighter 6 (1966Ho1 (1969Hu03) 1968Ko10 f may be affer 1968Ko10 n decay curve) d average of 6), 23 min 2 , and 22.0 n rom a $\gamma\gamma$ -cc cted by a sy nay represent.	23 min 3 (19 2 (1968Ko10) nin 8 (1970An nin measurements stematic unce the only the dec	265Be32), 21 min 2 (1966Be41), 21.7 min following the decay of 20γ , 19.8 min <i>10</i> r15). T _{1/2} =25.5 min <i>4</i> also obtained by ent disagrees with all the other values and rtainty. The 0.4-min uncertainty reported by viation of the experimental points in the
132.11 [@] 10	2+	0.67 ns 7	A CDEF	G J^{π} : E2 132 γ to T _{1/2} : from cer RDM in ¹⁵⁰	o 0 ⁺ . ntroid shift r 'Nd(³⁴ S,4ny'	nethod in ¹⁶⁸]).	$Er(^{16}O,4n\gamma)$. Other: 0.80 ns +21-14 from
408.63 [@] 13	4+	27.0 ps 35	A CDEF	G J^{π} : E2 276.5 γ	to 2 ⁺ .		
736.4 ^k 6	0^{+}		Α	J^{π} : E0 736 tra	nsition to 0 ⁺	⊦.	
795.07 [@] 15	6+	6.7 ps 17	A CDEF	G J^{π} : E2 386 γ to	o 4 ⁺ .		
831.09 ^k 19	2^{+}		A DEF	J ^π : E0+M1+E	2699γ to 2	+.	
870.44 ^{&} 18	2^{+}		A EF	J^{π} : E2 870 γ to	0^{+} .		
1022.85 ^{&} 17	3+		A EF	J ^π : M1+E2 89	$\rho_{1\gamma}$ to 2^+ , E	2 614 γ to 4 ⁺ ,	$\gamma\gamma(\theta)$ in ¹⁸⁰ Ir ε decay.
1052.66 ^k 20	4+		A EF	J ^π : E0+M1+E	2644γ to 4	+.	
1196.83 ^{&} 17	4+		A EF	J ^π : E0+M1+E	2788γ to 4	+.	
1257.45 [@] 20	8+	6.9 ps 14	CDEF	G J^{π} : E2 462 γ to	o 6 ⁺ .		
1375.4 5	3-		A	J^{π} : E1 505 γ to	ο 2 ⁺ , 967γ t	o 4 ⁺ .	
1378.95 ^k 19	6 ⁺		A EF	J^{n} : E0+M1+E	2584γ to 6	+.	
1405.55 18	5+		A EF	J^{π} : M1+E2 61	10γ to 6^+ , M	11+E2 99/γ t	0 4 ⁺ .
1514.63** 22	4		A DF	J [*] : E1+M2 49 E(level): there spaced 1514 only the 151 other studie: Adopted Ga	$p_{2\gamma}$ to 3 ⁺ , E are discrept 4.6-keV and 15.6-keV, 4 ⁺ s resolve the mmas for fu	1+M2 1106γ ancies in som 1515.56-keV level and pla two levels an arther informa	to 4 [°] ; band member. e depopulating transitions from the closely levels. 150 Nd(36 S,6n γ):Delayed reports aces all transitions from this level, whereas, nd their depopulating transitions. See ttion.
1515.07 19 1604.44 ^e 19	4 · 5-		A DEF	J^{π} : E2 645 γ to J^{π} : E1 408 γ to	0.2° .	-M2 809v to 0	6+.
1627.33 ^{&} 22	6 ⁺		EF	J^{π} : E2 1219 γ	to 4^+ . 832ν	to 6^+ .	~ ·
1761.43^{d} 21	6-		רים הים	J^{π} : E2 247 γ to	54^{-} , 532°	$2.966 \times 10.6^+$	
$1767.63^{@} 23$	10+		CDEF	G J^{π} : 510 γ E2 to	58^+ .	_ >007 10 0 .	
	10		2011	- • • • • • • • • • • • • • • • • • • •			

Continued on next page (footnotes at end of table)

180Os Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
1862.54 ^e 19	7-	<0.21 ns	CDEF	J^{π} : E2 258y to 5 ⁻ , E1(+M2) 605y to 8 ⁺ .
				T _{1/2} : from centroid shift in ¹⁶⁸ Er(¹⁶ O,4n γ). Other: 17 ns 3 from γ (t) in
				150 Nd(36 S,6n γ):Delayed.
1877.12 <i>17</i>	6+		DEF	J^{π} : E2 362 γ to 4 ⁺ , M1+E2 1082 γ to 6 ⁺ .
1881.1 ^{&} 3	7+		F	J^{π} : (E2) 475.5 γ to 5 ⁺ , M1+E2 1086 γ to 6 ⁺ .
1928.76 ^{<i>a</i>} 20	7-	15.2 ns <i>12</i>	DEF	J^{π} : E1 52 γ to 6 ⁺ , (E1) 671 γ to 8 ⁺ ,
				$T_{1/2}$: from $\gamma(t)$ in ¹⁰⁸ Er(¹⁰ O,4n γ). Others: 15.9 ns 21 from $\gamma\gamma(t)$ in
				$100 \text{ Er}(100,4n\gamma)$, 17 ns 3 from $100 \text{ Nd}(508,6n\gamma)$, $100 \text{ Nd}(548,4n\gamma)$, and 26
				is 5 from $\gamma(l)$ in the Nu(2-S, on γ): Delayed.
1987 0 ^b 4	8-		р	$F(\text{level})$ [π , observation of a 184 γ nonulating the 7-1929-keV level in
1907.0 7	0		D	150 Nd(36 S.6ny). 150 Nd(34 S.4ny) results in an energy shift and change of
				J^{π} to the band members observed in ¹⁶⁶ Er(¹⁸ O,4n\gamma), ¹⁶⁸ Er(¹⁶ O,4n\gamma). See
				the latter dataset for additional comments.
2086.2 ^d 3	8-		DF	J^{π} : E2 325 γ to 6 ⁻ .
2113.1 ^{<i>a</i>} 4	9-		DF	J^{π} : M1+E2 126 γ to 8 ⁻ , 184 γ to 7 ⁻ .
2175.69 ^e 21	9-		CDEF	J^{n} : E2 313 γ to 7 ⁻ , E1 408 γ to 10 ⁺ .
2275.9° 4	10^{-}		DF	J^{n} : E2 289y to 8 ⁻ , M1+E2 163y to 9 ⁻ .
$2280.00^{\circ} 24$	(7,8)			J^{**} M1+E2 423 γ 10 / , 110.3 γ 10 9 .
$2308.9 \circ 3$	12" 0 [±]		CDEFG	$J^{*}: E2.541\gamma 10.10^{\circ}.$
2410.8^{-5}	9		r D F	J^{*} : E2 550 γ to 7°.
2429.1 ⁴ 3	10-			π = 2.277 ()= 1/((= 2) 2.27 ()=
2463.0^{a} 3 2467 1 ^a 4	10			$J^{*}: E2 \ 3//\gamma \text{ to } 8$, M1(+E2) 28/γ to 9. $I^{\pi}: E2 \ 35/\gamma \text{ to } 9^{-} M1 + E2 \ 191\gamma \text{ to } 10^{-}$
2544.32^{e} 24	11-		CDEF	J^{π} : E2 369y to 9 ⁻ , K1+L2 191y to 10 ⁺ .
2599.1 ^{<i>h</i>} 4			DF	
2635.7 ¹ 3			F	
2675.41 [°] 25	(9 ⁻ ,10 ⁻)		DF	J^{π} : E2 398 γ to (7 ⁻ ,8 ⁻), D(+Q) 908 γ to 10 ⁺ .
2683.4 ^b 4	12-		DF	J^{π} : E2 407 γ to 10 ⁻ , M1+E2 216 γ to 11 ⁻ .
2695.3 ⁱ 3	12^{+}		DEF	J^{π} : E2 312 γ from 14 ⁺ , 387 γ to 12 ⁺ .
2875.3 [@] 3	14+		CDEFG	J^{π} : E2 566 γ to 12 ⁺ .
2915.5 ^h 3			DF	
2918.8 ^{<i>a</i>} 4	13-		DF	J^{π} : E2 451.5 γ to 11 ⁻ , M1+E2 236 γ to 12 ⁻ .
2919.6 ^d 3	12-		DF	J^{π} : E2 456.5 γ to 10 ⁻ , M1+E2 375 γ to 11 ⁻ .
2925.4 ¹ 3			F	
2982.0 ^e 3	13-		CDEF	J^{π} : E2 438 γ to 11 ⁻ , E1 673 γ to 12 ⁺ .
3007.9 ^{<i>i</i>} 3	14+		DEF	J^{π} : E2 699 γ to 12 ⁺ .
3139.3° 3	(11,12)			$J^*: 464\gamma$ to (9, 10), band assignment.
$31/6.3^{\circ} 4$	14		DF	J^{*} : E2 493 γ to 12 .
$3246.3^{\circ}3$			1	
3342.8^{-4}	17+			
$3402.7^{\circ}3$ $3402.7^{\circ}3$	10' 15 ⁻		DEF	$J^*: E2 395\gamma$ to 14 ⁺ , E2 52/ γ to 14 ⁺ . $I^{\pi}: E2 524\alpha$ to 13 ⁻ M1+E2 266 4 α to 14 ⁻
34521^{d}	1 <i>3</i> 1 <i>4</i> ⁻			I^{π} : F2 5227 to 12 ⁻ M1+F2 468v to 13 ⁻
3476.4 ^e 3	15-		CDEF	J^{π} : E2 494 γ to 13 ⁻ , E1 601 γ 14 ⁺ .
3494.8 ^j 4	16+		CDEF	J^{π} : E2 620 γ to 14 ⁺ .
3629.2 ¹ 3			F	
3656.7 [°] 3	(13 ⁻ ,14 ⁻)		DF	J^{π} : E2 517 γ to (11 ⁻ ,12 ⁻).
3703.8 <mark>8</mark> 5	(11,12)	≤5 ns	D	$T_{1/2}$: from $\gamma\gamma(t)$ in ¹⁵⁰ Nd(³⁶ S,6n γ), ¹⁵⁰ Nd(³⁴ S,4n γ).

Continued on next page (footnotes at end of table)

180Os Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
			J^{π} : D(+Q) 1020 γ to 12 ⁻ , D(+Q) 1237 γ to 11 ⁻ .
3735.3 ^b 4	16-	DF	J^{π} : E2 559 γ to 14 ⁻ .
3855.7 ^{<i>f</i>} 7	(12,13)	D	J^{π} : (D+Q) 152 γ (11,12).
3886.5 ^h 5		DF	
3925.9 ⁱ 4	18^{+}	DEF	J^{π} : E2 523 γ to 16 ⁺ .
3981.7 ^e 3	17-	DEF	J^{π} : E2 505 γ to 15 ⁻ .
4027.6 ^d 5	16-	DF	J^{π} : E2 576 γ to 14 ⁻ .
4031.3 ^{<i>a</i>} 4	17-	DF	J^{π} : E2 589 γ to 15 ⁻ .
4037.5 ⁸ 7	(13,14)	D	J^{π} : 182 γ to (12,13), 334 γ to (11,12).
4067.5 ¹ 6		F	
4134.6 ^J 4	18+	CDEF	J^{π} : E2 640 γ to 16 ⁺ .
4200.8 ^c 4	$(15^{-}, 16^{-})$	D F	J^{π} : E2 544 γ to (13 ⁻ ,14).
4248.5 ^J 7	(14,15)	D	J^{π} : 211 γ to (13,14), 393 γ to (12,13).
4342.4 ^b 5	18-	D F	J^{π} : E2 607 γ to 16 ⁻ .
4486.68 7	(15,16)	D	J^{π} : 238 γ to (14,15), 449 γ to (13,14).
4497.0° 4	19-	DEF	J^{*} : E2 515 γ to 1/ ⁻ .
4531.8 ⁿ 6		DF	J^{π} : E2 645 γ to (16 ⁺).
4542.7 [°] 4	20+	DEF	J^{n} : E2 617 γ to 18 ⁺ .
4581.0 ¹ 7		F	
4599.6 ^{<i>a</i>} 6	18-	DF	J^{π} : E2 572 γ to 16 ⁻ .
4651.4 ^{<i>a</i>} 5	19-	D F	J^{n} : E2 620 γ to 17 ⁻ .
4750.7J 8	(16,17)	D	J^{π} : 264 γ to (15,16), 502 γ to (14,15).
4//0.20 6	(1/,18)	DF	J^{*} : E2 569 γ E2 (15, 16).
4821.4 ^J 5	20+	D F	J^{n} : E2 68/ γ to 18 ⁺ .
4978.2° 5	20-	DF	J^{π} : E2 636 γ to 18 ⁻ .
$5037.2^{\circ}8$ $5045.0^{\circ}4$	(17,18)	D F	J [*] : $28/\gamma$ to (16,17), 551γ to (15,16).
51260 7	21	D r F	J. EZ 546 y 10 17 .
5150.2 7	(20-)	г	I_{π} , 545 to 10^{-1} hand assignment
5104.0^{-7}	(20^{-})		J^{T} : 5059 to 18, band assignment.
5256.5° 5	22		$J^{**} E_2 694\gamma 10 20^{*}$.
5255.0^{-4} /	21-		I_{π} , E2 642a, to 10 ⁻
5295.0 0	(18, 10)	Dr	J. E2 0427 to 19. III_{12} = III_{12} to $(17.19)_{12}$ = 507 to $(16.17)_{12}$
5348.0° 8 5387 4 [°] 7	(18,19) $(19^{-}~20^{-})$	D F	J^{-1} : 511 γ to (17,18), 597 γ to (10,17). I^{π_1} E2 617 γ to (17-18 ⁻)
5550.9^{j}_{-6}	(1) ,20)		I^{π} : E2 730 ₂ to 20 ⁺
5561.6 11	22	E	J^{π} : J>19, tentative assignment with dipole transition assumed (1993Ve01).
5625.7 <mark>b</mark> 6	22-	DF	J^{π} : E2 648 γ to 20 ⁻ .
5666.5 ^e 5	23-	DF	J^{π} : E2 622 γ to 21 ⁻ .
5731.5 ¹ 11		F	
5787.7 <mark>d</mark> 8	(22^{-})	DF	J^{π} : E2 623 γ to (20 ⁻).
5951.5 <mark>a</mark> 7	23-	DF	J^{π} : E2 658 γ to 21 ⁻ .
5981.3 ⁱ 6	24+	DF	J^{π} : E2 745 γ to 22 ⁺ .
6024.8 ^h 8		DF	
6055.5 [°] 7	(21 ⁻ ,22 ⁻)	DF	J^{π} : E2 668 γ to (19 ⁻ ,20 ⁻).
6298.1 ^b 7	(24-)	DF	J^{π} : 672 γ to 22 ⁻ , band assignment.
6323.6 ^j 8	(24^{+})	DF	J^{π} : (E2) 773 γ to 22 ⁺ .
6373.3 ¹ 15		F	
6378.0 ^e 6	25-	DF	J^{π} : E2 712 γ to 23 ⁻ .

Continued on next page (footnotes at end of table)

¹⁸⁰Os Levels (continued)

E(level) [†]	Jπ‡	XREF	Comments
6496.3 ^d 8	(24^{-})	DF	J^{π} : 709 γ to (22 ⁻), band assignment.
6653.0 ^a 10	(25 ⁻)	DF	J^{π} : 702 γ to 23 ⁻ , band assignment.
6766.5 ⁱ 6	26+	DF	J^{π} : E2 785 γ to 24 ⁺ .
6772.5 ^C 12	(23 ⁻ ,24 ⁻)	DF	J^{π} : 717 γ to (21 ⁻ ,22 ⁻).
6823.9 ^h 10		D	
7030.8 ^b 8	(26 ⁻)	DF	J^{π} : (E2) 733 γ to 24 ⁻ .
7144.9 ^j <i>13</i>	(26 ⁺)	D	J^{π} : 821 γ to (24 ⁺), band assignment.
7179.7 ^e 8	(27 ⁻)	D	J^{π} : 802 γ to 25 ⁺ , band assignment.
7290.4 ^d 10	(26 ⁻)	D	J^{π} : 794 γ to (24 ⁻), band assignment.
7431.1 ^a 11	(27 ⁻)	D	J^{π} : 778 γ to (25 ⁻), band assignment.
7535.4 ^c 13	(25 ⁻ ,26 ⁻)	D	J^{π} : 763 γ to (23 ⁻ ,24 ⁻).
7614.7 ⁱ 8	(28 ⁺)	D	J^{π} : 848 γ to 26 ⁺ , band assignment.
7664.8 ^h 11		D	
7842.5 <mark>b</mark> 10	(28-)	D	J ^{π} : 812 γ to (26 ⁻), band assignment.
8014.6 ^j 14	(28+)	D	J ^{π} : 870 γ to (26 ⁺), band assignment.
8063.6 ^e 9	(29 ⁻)	D	J^{π} : 884 γ to (27 ⁻), band assignment.
8303.2 ^{<i>a</i>} 12	(29 ⁻)	D	J^{π} : 872 γ to (27 ⁻), band assignment.
8348.5 [°] 14	(27 ⁻ ,28 ⁻)	D	J^{π} : 813 γ to (25 ⁻ ,26 ⁻).
8554.0 ⁱ 9	(30+)	D	J^{π} : 939 γ to (28 ⁺), band assignment.
8573.0 ^h 12		D	
8739.8 ^b 11	(30 ⁻)	D	J^{π} : 897 γ to (28 ⁻), band assignment.
8918.3 ^j 15	(30+)	D	J^{π} : 904 γ to (28 ⁺).
9021.9 ^e 11	(31 ⁻)	D	J^{π} : 958 γ to (29 ⁻).
9220.3 [°] 15	(29 ⁻ ,30 ⁻)	D	J^{π} : 872 γ to (27 ⁻ ,28 ⁻).
9276.7 ^a 13	(31 ⁻)	D	J^{π} : 974 γ to (29 ⁻), band assignment.
9595.4 ⁱ 11	(32+)	D	J^{π} : 1041 γ to (30 ⁺), band assignment.
9717.3 ^b 12	(32 ⁻)	D	J^{π} : 978 γ to (30 ⁻), band assignment.
9845.6 ^j 15	(32+)	D	J^{π} : 927 γ to (30 ⁺), band assignment.
10049.7 ^e 12	(33-)	D	J^{π} : 1028 γ to (31 ⁻), band assignment.
10152.1 [°] 16	(31 ⁻ ,32 ⁻)	D	J^{π} : 932 γ to (29 ⁻ ,30 ⁻), band assignment.
10737.1? ⁱ 12	(34 ⁺)	D	J^{π} : 1142 γ to (32 ⁺), band assignment.
11146.9? ^C 17	(33 ⁻ ,34 ⁻)	D	J^{π} : 995 γ to (31 ⁻ ,32 ⁻), band assignment.

[†] From a least-squares fit to $E\gamma$ by evaluator.

[‡] Spin and parity assignments are based on measured γ -ray multipolarities, decay patterns, angular distributions, assumed rotational structure and on deduced gyromagnetic ratios and angular momentum alignment for the various rotational bands in 150 Nd(36 S,6n γ), 150 Nd(34 S,4n γ) and 166 Er(18 O,4n γ), 168 Er(16 O,4n γ). # From RDM in 150 Nd(36 S,6n γ), 150 Nd(34 S,4n γ), except where noted.

[@] Band(A): $K^{\pi}=0^+$ g.s. rotational band.

& Band(B): $K^{\pi}=2^+ \gamma$ -vibrational band.

^{*a*} Band(C): $K^{\pi}=7^{-}$ rotational band, $\alpha=1$.

^b Band(D): $K^{\pi}=7^{-}$ rotational band, $\alpha=0$.

^{*c*} Band(E): $K^{\pi} = (7^{-}, 8^{-})$ rotational band.

^d Band(F): Low K rotational band (K=1-3) with configuration $\frac{y9}{2[624]y7}$ and strong mixing with either $\pi 5/2[402]\pi 9/2[514]$ or $\pi 5/2[402]\pi 1/2[541]$. $\alpha=0$.

^e Band(G): Low K rotational band (K=1-3) with configuration v9/2[624]v7/2[514] and strong mixing with either

¹⁸⁰Os Levels (continued)

 $\pi 5/2[402]\pi 9/2[514]$ or $\pi 5/2[402]\pi 1/2[541]$. $\alpha = 1$.

- ^f Band(H): rotational band.
- ^{*g*} Band(I): rotational band.
- ^{*h*} Band(J): Rotational Band. $K^{\pi} = (7^+)$ suggested for the bandhead at 2429 keV in ¹⁵⁰Nd(³⁶S,6n\gamma),¹⁵⁰Nd(³⁴S,4n\gamma).
- ^{*i*} Band(K): $K^{\pi} = 14^+$ rotational band.
- ^{*j*} Band(L): $K^{\pi} = 16^+$ rotational band.
- ^{*k*} Band(M): $K^{\pi} = 0^{+} \beta$ -vibrational band.

^{*l*} Band(N): Rotational band. $K^{\pi} = (8^{-})$ suggested for the bandhead at 2636 keV in ¹⁵⁰Nd(³⁶S,6n\gamma),¹⁵⁰Nd(³⁴S,4n\gamma).

					Adopt	ted Levels, Gamma	as (continued)	
						$\gamma(^{180}\text{Os})$		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α	Comments
132.11	2+	132.1 <i>1</i>	100	0.0 0+	E2 [@]		1.464	$\alpha(K)=0.472\ 7;\ \alpha(L)=0.748\ 11;\ \alpha(M)=0.191\ 3;\ \alpha(N)=0.0458$ 7; $\alpha(O)=0.00680\ 10$ $\alpha(P)=4.34\times10^{-5}\ 7$ B(F2)(W n)=141\ 15
408.63	4+	276.5 1	100	132.11 2+	E2 [@]		0.1169	$\alpha(K)=0.0728 \ 11; \ \alpha(L)=0.0334 \ 5; \ \alpha(M)=0.00831 \ 12; \\ \alpha(N)=0.00200 \ 3; \ \alpha(O)=0.000309 \ 5 \\ \alpha(P)=7 \ 22\times10^{-6} \ 11$
736.4	0+	604.1		132.11 2+	E2		0.01452	B(E2)(W.u.)=192 25 α(K)=0.01127 16; α(L)=0.00249 4; α(M)=0.000592 9; α(N)=0.0001434 20; α(O)=2.35×10 ⁻⁵ 4 α(P)=1.206×10 ⁻⁶ 17 Mult.: Q from $\gamma\gamma(\theta)$ in ¹⁸⁰ Ir ε decay; Δπ=no from level scheme.
795.07	6+	736.3 386.4 <i>1</i>	100	$\begin{array}{ccc} 0.0 & 0^+ \\ 408.63 & 4^+ \end{array}$	E0 [@] E2		0.0444	$\alpha(K)=0.0314\ 5;\ \alpha(L)=0.00993\ 14;\ \alpha(M)=0.00242\ 4;$ $\alpha(N)=0.000585\ 9;\ \alpha(O)=9.27\times10^{-5}\ 13$ $\alpha(P)=3.26\times10^{-6}\ 5$ $B(F2)(Wu)=1\ 6\times10^{2}\ 4$
831.09	2+	94.5 ^{&}	≈2 ^{&}	736.4 0+	[E2]		5.49	$\alpha(K)=0.856\ 12;\ \alpha(L)=3.50\ 5;\ \alpha(M)=0.894\ 13;\ \alpha(N)=0.214$ 3; $\alpha(O)=0.0316\ 5;\ \alpha(P)=9.62\times10^{-5}\ 14$
		422.3 ^{&}	4.1 ^{&} 14	408.63 4+	E2 [@]		0.0350	α (K)=0.0254 4; α (L)=0.00738 11; α (M)=0.00179 3; α (N)=0.000433 6; α (O)=6.91×10 ⁻⁵ 10 α (P)=2.66×10 ⁻⁶ 4
		699.0 2	100 ^{&} 5	132.11 2+	E0+M1+E2 [@]	<-9	0.0498 ^{<i>a</i>} 22	α(K) = 0.016 8; α(L) = 0.0027 10; α(M) = 0.00061 22; α(N) = 0.00015 6; α(O) = 2.5 × 10-5 10 α(P) = 1.8 × 10-6 9 δ; from γγ(θ) in 180 Ir ε decay.
		831.5 ^{&}	3.6 ^{&} 14	0.0 0+	[E2]		0.00723	$\alpha(K)=0.00582 \ 9; \ \alpha(L)=0.001085 \ 16; \ \alpha(M)=0.000253 \ 4; \\ \alpha(N)=6.15\times10^{-5} \ 9; \ \alpha(O)=1.030\times10^{-5} \ 15 \\ \alpha(P)=6.24\times10^{-7} \ 9$
870.44	2+	461.8 ^{&} 5	6.3 ^{&} 11	408.63 4+	E2 [@]		0.0278	$\begin{aligned} \alpha(K) = 0.0206 \ 3; \ \alpha(L) = 0.00554 \ 8; \ \alpha(M) = 0.001335 \ 20; \\ \alpha(N) = 0.000323 \ 5; \ \alpha(O) = 5.19 \times 10^{-5} \ 8 \\ \alpha(P) = 2.17 \times 10^{-6} \ 3 \\ E_{\gamma}: \ from \ ^{150}Nd(^{36}S, 6n\gamma):Delayed. \\ I_{\gamma}: \ other: \ 32 \ 16 \ in \ ^{150}Nd(^{36}S, 6n\gamma):Delayed. \end{aligned}$
		738.0 <i>3</i>	25.6 ^{&} 23	132.11 2+	E0+M1+E2 [@]	+5.4 +36-17	0.0463 ^{<i>a</i>} 42	

6

					Adopte	d Levels, Gamm	as (continued)	
						$\gamma(^{180}\text{Os})$ (contin	nued)	
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_f J_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α	Comments
870.44	2+	870.5 <i>3</i>	100.0 ^{&} 23	0.0 0+	E2 [@]		0.00657	$ \begin{array}{l} \text{in}^{166}\text{Er}(^{18}\text{O},4n\gamma), ^{168}\text{Er}(^{16}\text{O},4n\gamma). \\ \text{I}_{\gamma}: \text{ other: } 42 \ 9 \ \text{in} \ ^{166}\text{Er}(^{18}\text{O},4n\gamma), ^{168}\text{Er}(^{16}\text{O},4n\gamma). \\ \alpha(\text{K}) = 0.00531 \ 8; \ \alpha(\text{L}) = 0.000972 \ 14; \ \alpha(\text{M}) = 0.000226 \ 4; \\ \alpha(\text{N}) = 5.50 \times 10^{-5} \ 8; \ \alpha(\text{O}) = 9.23 \times 10^{-6} \ 13 \end{array} $
1022.85	3+	614.1 ^{&} 3	18.6 ^{&} 24	408.63 4+	E2 [@]		0.01399	$\alpha(P)=5.70\times10^{-7} 8$ $\alpha(K)=0.01088 \ 16; \ \alpha(L)=0.00238 \ 4; \ \alpha(M)=0.000565 \ 8; \ \alpha(N)=0.0001369 \ 20; \ \alpha(O)=2.25\times10^{-5} \ 4$ $\alpha(P)=1.165\times10^{-6} \ 17$ L , other 41 17 in ¹⁵⁰ Nd(³⁶ S frant) Delayed
		890.8 2	100 ^{&} 8	132.11 2+	M1+E2 [@]	+8.8 +27-17	0.00638 11	
1052.66	4+	222.0 ^{&}	9.3 ^{&} 17	831.09 2+	[E2]		0.235	$\alpha(K)=0.1292 \ 18; \ \alpha(L)=0.0798 \ 12; \ \alpha(M)=0.0200 \ 3; \\ \alpha(N)=0.00482 \ 7; \ \alpha(O)=0.000733 \ 11 \\ \alpha(P)=1.232\times10^{-5} \ 18$
		257.9 ^{&}	2.5 ^{&} 9	795.07 6+	[E2]		0.1450	α (K)=0.0873 <i>13</i> ; α (L)=0.0438 <i>7</i> ; α (M)=0.01092 <i>16</i> ; α (N)=0.00263 <i>4</i> ; α (O)=0.000404 <i>6</i> α (P)=8.55×10 ⁻⁶ <i>12</i>
		644.1 <i>3</i>	100 ^{&} 6	408.63 4+	E0+M1+E2 [@]	-3.5 +5-7	0.120 ^{<i>a</i>} 5	$\alpha(K)=0.0112 5; \alpha(L)=0.00227 7; \alpha(M)=0.000534 15; \alpha(N)=0.000130 4; \alpha(O)=2.15\times10^{-5} 7 \alpha(P)=1.22\times10^{-6} 6$
		920.9 ^{&}	17.4 ^{&} 12	132.11 2+	[E2]		0.00586	$\alpha(K)=0.00475 \ 7; \ \alpha(L)=0.000851 \ 12; \ \alpha(M)=0.000198 \ 3; \alpha(N)=4.81\times10^{-5} \ 7; \ \alpha(O)=8.09\times10^{-6} \ 12 \alpha(P)=5.10\times10^{-7} \ 8$
1196.83	4+	327.0 ^{&}	6.5 ^{&} 24	870.44 2+	[E2]		0.0709	α (K)=0.0474 7; α (L)=0.0179 3; α (M)=0.00440 7; α (N)=0.001061 15; α (O)=0.0001659 24 α (P)=4.82×10 ⁻⁶ 7
		401.9 ^{&}	5.9 ^{&} 12	795.07 6+	[E2]		0.0399	$\alpha(K) = 0.0285 \ 4; \ \alpha(L) = 0.00870 \ 13; \ \alpha(M) = 0.00212 \ 3; \alpha(N) = 0.000511 \ 8; \ \alpha(O) = 8.13 \times 10^{-5} \ 12 \alpha(P) = 2.98 \times 10^{-6} \ 5$
		788.2 2	100 ^{&} 18	408.63 4+	E0+M1+E2 [@]	+1.3 1	0.0154 ^{<i>a</i>} 13	
		1064.7 <i>3</i>	44 ^{&} 3	132.11 2+	E2 [@]		0.00439	$\alpha(K)=0.00359 5; \alpha(L)=0.000612 9; \alpha(M)=0.0001414 20;$

 \neg

					Adopt	ed Levels, Gan	nmas (continu	ued)
						$\gamma(^{180}\text{Os})$ (cc	ontinued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α	Comments
1257.45	8+	462.3 2	100	795.07 6+	E2		0.0277	$\begin{aligned} &\alpha(N)=3.44\times10^{-5} 5; \ \alpha(O)=5.83\times10^{-6} 9\\ &\alpha(P)=3.85\times10^{-7} 6\\ &I_{\gamma}: \text{ other: } 97 \ 18 \text{ in } ^{166}\text{Er}(^{18}\text{O},4n\gamma), ^{168}\text{Er}(^{16}\text{O},4n\gamma).\\ &\alpha(K)=0.0205 \ 3; \ \alpha(L)=0.00552 \ 8; \ \alpha(M)=0.001331 \ 19;\\ &\alpha(N)=0.000322 \ 5; \ \alpha(O)=5.17\times10^{-5} \ 8\\ &\alpha(P)=2.16\times10^{-6} \ 3 \end{aligned}$
1375.4	3-	352.3 ^{&}	94 ^{&} 6	1022.85 3+	[E1]		0.01675	B(E2)(W.u.)=63 13 α (K)=0.01394 20; α (L)=0.00217 3; α (M)=0.000494 7; α (N)=0.0001197 17; α (O)=2.02×10 ⁻⁵ 3 α (P)=1.330×10 ⁻⁶ 19
		505.0 ^{&}	100 ^{&} 6	870.44 2+	E1 [@]		0.00750	$\alpha(K) = 0.00628 \ 9; \ \alpha(L) = 0.000948 \ 14; \ \alpha(M) = 0.000216 \ 3; \alpha(N) = 5.23 \times 10^{-5} \ 8; \ \alpha(O) = 8.89 \times 10^{-6} \ 13 \alpha(P) = 6.15 \times 10^{-7} \ 9$
		544.3 ^{&}	79 ^{&} 6	831.09 2+	E1 [@]		0.00640	$\alpha(K) = 0.00536 \ 8; \ \alpha(L) = 0.000805 \ 12; \ \alpha(M) = 0.000183 \ 3; \ \alpha(N) = 4.44 \times 10^{-5} \ 7; \ \alpha(O) = 7.56 \times 10^{-6} \ 11 \ \alpha(P) = 5.27 \times 10^{-7} \ 8$
		967.1 ^{&}	13 & 3	408.63 4+	[E1]		0.00207	$\alpha(K) = 0.001744 \ 25; \ \alpha(L) = 0.000252 \ 4; \ \alpha(M) = 5.70 \times 10^{-5} \\ 8; \ \alpha(N) = 1.387 \times 10^{-5} \ 20; \ \alpha(O) = 2.38 \times 10^{-6} \ 4 \\ \alpha(P) = 1.753 \times 10^{-7} \ 25$
		1243.0 ^{&}	53 ^{&} 3	132.11 2+	[E1]		1.35×10^{-3}	$\alpha(K)=0.001113 \ 16; \ \alpha(L)=0.0001589 \ 23; \\ \alpha(M)=3.59\times10^{-5} \ 5; \ \alpha(N)=8.73\times10^{-6} \ 13 \\ \alpha(O)=1.505\times10^{-6} \ 21; \ \alpha(P)=1.126\times10^{-7} \ 16$
1378.95	6+	326.3 ^{&} 2	61 <i>15</i>	1052.66 4+	[E2]		0.0714	$\alpha(K)=0.0477 \ 7; \ \alpha(L)=0.0180 \ 3; \ \alpha(M)=0.00443 \ 7; \\ \alpha(N)=0.001070 \ 16; \ \alpha(O)=0.0001672 \ 24 \\ \alpha(P)=4.85\times10^{-6} \ 7 \\ I_{\gamma}: \text{ weighted average of } 58 \ 21 \ \text{from } ^{180}\text{Ir } \varepsilon \text{ decay, } 59 \ 18 \\ \text{from } ^{150}\text{Nd}(^{36}\text{S},6n\gamma):\text{Delayed, and } 64 \ 15 \ \text{from } ^{166}\text{Er}(^{18}\text{O},4n\gamma), ^{168}\text{Er}(^{16}\text{O},4n\gamma).$
		583.8 <i>3</i>	100 18	795.07 6+	E0+M1+E2 [@]	-1.6 +3-4	0.059 ^a 10	$\alpha(K)=0.0191 \ 23; \ \alpha(L)=0.0036 \ 3; \ \alpha(M)=0.00084 \ 7; \\ \alpha(N)=0.000204 \ 16; \ \alpha(O)=3.4\times10^{-5} \ 3 \\ \alpha(P)=2.1\times10^{-6} \ 3 \\ \delta: \ \text{from } \gamma\gamma(\theta) \ \text{in } {}^{180}\text{Ir } \varepsilon \ \text{decay. Other: } -0.20 \ 20 \ \text{from} \\ \gamma(\theta) \ \text{in } {}^{166}\text{Er}({}^{18}\text{O},4n\gamma), {}^{168}\text{Er}({}^{16}\text{O},4n\gamma).$
		969.9 ^{&}	13 ^{&} 6	408.63 4+	[E2]		0.00528	$\alpha(K)=0.00430\ 6;\ \alpha(L)=0.000755\ 11;\ \alpha(M)=0.0001751$ 25; $\alpha(N)=4.26\times10^{-5}\ 6$
1405.55	5+	382.5 <i>3</i>	7.4 19	1022.85 3+	[E2]		0.0457	$\alpha(O) = 7.18 \times 10^{-7} I0; \ \alpha(P) = 4.01 \times 10^{-7} / \alpha(K) = 0.0322 \ 5; \ \alpha(L) = 0.01028 \ 15; \ \alpha(M) = 0.00251 \ 4; \\ \alpha(N) = 0.000606 \ 9; \ \alpha(O) = 9.59 \times 10^{-5} \ 14 \\ \alpha(P) = 3.34 \times 10^{-6} \ 5$

 ∞

 $^{180}_{76}\mathrm{Os}_{104}\text{--}8$

From ENSDF

 $^{180}_{76}\mathrm{Os}_{104}\text{--}8$

					Ad	opted Levels, Ga	mmas (conti	nued)
						$\gamma(^{180}\text{Os})$ (c	continued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α	Comments
	_							I_{γ} : from ¹⁸⁰ Ir ε decay. Others: 40 <i>12</i> from ¹⁵⁰ Nd(³⁶ S,6nγ):Delayed and 38 <i>16</i> from ¹⁶⁶ Er(¹⁸ O,4nγ), ¹⁶⁸ Er(¹⁶ O,4nγ).
1405.55	5+	610.3 <i>3</i>	39 11	795.07 6+	M1+E2 [@]	+4 1	0.0157 11	α(K)=0.0123 10; α(L)=0.00258 12; α(M)=0.00061 3; α(N)=0.000148 7; α(O)=2.44×10-5 12 α(P)=1.33×10-6 11 δ: from γγ(θ) in 180Ir ε decay. Iγ: weighted average of 26 11 from 180Ir EC ε decay and 55 12
		996.94 <i>24</i>	100 14	408.63 4+	M1+E2 [@]	-2.4 4	0.0059 4	from ¹⁵⁰ Nd(³⁶ S,6n γ):Delayed. α (K)=0.0049 3; α (L)=0.00082 4; α (M)=0.000189 9; α (N)=4.60×10 ⁻⁵ 23; α (O)=7.8×10 ⁻⁶ 4 α (P)=5.3×10 ⁻⁷ 4 I _{γ} : weighted average of ¹⁸⁰ Ir ε decay, ¹⁵⁰ Nd(³⁶ S,6n γ):Delayed, α (S)=0.00189 9; α (N)=0.00189 9; α (N)=0.00189 9; α (N)=0.00189 9; α (N)=0.00189 9; α (N)
		0	0					and ¹⁶⁰ Er(¹⁸ O,4n γ), ¹⁰⁸ Er(¹⁶ O,4n γ). δ : from $\gamma\gamma(\theta)$ in ¹⁸⁰ Ir ε decay. Other: -12 4 from $\gamma(\theta)$ in ¹⁶⁶ Er(¹⁸ O,4n γ), ¹⁶⁸ Er(¹⁶ O,4n γ).
1514.63	4-	318.1 ^{&} 492.0 <i>3</i>	$17^{\&} 3$ $100^{\&} 6$	1196.83 4 ⁺ 1022.85 3 ⁺	E1+M2 [@]	+0.23 +10-9	0.018 <i>10</i>	E _γ : placed from 1515.6-keV, 4 ⁺ level in ¹⁵⁰ Nd(³⁶ S,6nγ):Delayed. $\alpha(K)=0.015 \ 8; \ \alpha(L)=0.0026 \ 16; \ \alpha(M)=0.0006 \ 4; \ \alpha(N)=0.00015$ $9; \ \alpha(O)=2.5\times10^{-5} \ 15$ $\alpha(P)=1.8\times10^{-6} \ 11$ δ: from $\gamma\gamma(\theta)$ in ¹⁸⁰ Ir ε decay. E : placed from 1515 6 keV 4 ⁺ level in ¹⁵⁰ Nd(³⁶ S 6nα):Delayed
		1106.0 <i>3</i>	71 ^{&} 6	408.63 4+	E1+M2 [@]	+0.17 +4-0	0.0022 3	
1515.67	4+	644.9 <i>3</i>	100 ^{&} 30	870.44 2+	E2		0.01252	$\alpha(K)=0.00980 \ 14; \ \alpha(L)=0.00208 \ 3; \ \alpha(M)=0.000492 \ 7; \ \alpha(N)=0.0001194 \ 17; \ \alpha(O)=1.97\times10^{-5} \ 3 \ \alpha(P)=1.050\times10^{-6} \ 15$
		684.6 <i>3</i>	76 ^{&} 7	831.09 2+	(E2)		0.01096	$\alpha(K) = 0.00865 \ 13; \ \alpha(L) = 0.001775 \ 25; \ \alpha(M) = 0.000418 \ 6; \alpha(N) = 0.0001015 \ 15 \alpha(O) = 1.680 \times 10^{-5} \ 24; \ \alpha(P) = 9.27 \times 10^{-7} \ 13$
1604.44	5-	1383.8 <i>3</i> 90.3 <i>10</i> 225.3 <i>3</i>	58 <i>30</i> 6 <i>4</i> 10 <i>4</i>	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$				E_{γ}, I_{γ} : from ¹⁵⁰ Nd(³⁶ S,6n γ):Delayed.
		407.6 3	45 4	1196.83 4+	E1 [@]		0.01201	$\begin{aligned} &\alpha(\mathbf{K}) = 0.01002 \ 15; \ \alpha(\mathbf{L}) = 0.001538 \ 22; \ \alpha(\mathbf{M}) = 0.000350 \ 5; \\ &\alpha(\mathbf{N}) = 8.49 \times 10^{-5} \ 12 \\ &\alpha(\mathbf{O}) = 1.437 \times 10^{-5} \ 21; \ \alpha(\mathbf{P}) = 9.66 \times 10^{-7} \ 14 \end{aligned}$

9

$\gamma(^{180}\text{Os})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	$E_f = J_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α	Comments
1604.44	5-	809.3 3	100 14	795.07 6+	E1+M2	+0.10 4	0.0034 5	$ \alpha(K)=0.0028 4; \alpha(L)=0.00042 7; \alpha(M)=9.6 \times 10^{-5} 15; \alpha(N)=2.3 \times 10^{-5} 4; \alpha(O)=4.0 \times 10^{-6} 7 \alpha(P)=2.9 \times 10^{-7} 5 $ δ: from $\gamma\gamma(\theta)$ in ¹⁸⁰ Ir ε decay. Other: +0.02 5 from $\gamma(\theta)$ in
		1195.9 <i>3</i>	19 <i>4</i>	408.63 4+	E1+M2	+0.1 3	0.0016 <i>21</i>	¹⁶⁶ Er(¹⁸ O,4nγ), ¹⁶⁸ Er(¹⁶ O,4nγ). α (K)=0.0013 <i>17</i> ; α (L)=0.0002 <i>3</i> ; α (M)=4.E-5 <i>7</i> ; α (N)=1.1×10 ⁻⁵ <i>16</i> ; α (O)=2.E-6 <i>3</i> α (P)=1.4×10 ⁻⁷ <i>21</i> Mult.: D(+Q) from $\gamma(\theta)$ in ¹⁶⁶ Er(¹⁸ O,4nγ), ¹⁶⁸ Er(¹⁶ O,4nγ), $\Delta\pi$ =yes
1627.33	6+	430.6 <i>3</i>	43 <i>13</i>	1196.83 4+	[E2]		0.0333	from level scheme. $\alpha(K)=0.0242 \ 4$; $\alpha(L)=0.00693 \ 10$; $\alpha(M)=0.001678 \ 24$; $\alpha(N)=0.000406$ 6 ; $\alpha(O)=6.48 \times 10^{-5} \ 10$ $\alpha(P)=2.54 \times 10^{-6} \ 4$
		832.4 5	100 30	795.07 6+				
		1218.7 5	90 <i>30</i>	408.63 4+	E2		0.00338	α (K)=0.00278 4; α (L)=0.000457 7; α (M)=0.0001050 15; α (N)=2.56×10 ⁻⁵ 4; α (O)=4.35×10 ⁻⁶ 7 α (P)=2.97×10 ⁻⁷ 5
1761.43	6-	157.1 5	18 11	1604.44 5-	M1+E2	+0.25 12	1.51 6	$\alpha(K) = 1.237; \ \alpha(L) = 0.216\ 10; \ \alpha(M) = 0.050\ 3; \ \alpha(N) = 0.0122\ 7; \ \alpha(O) = 0.00208\ 8 \ \alpha(P) = 0.000142\ 8$
								Mult.: D+Q from $\gamma(\theta)$ in ¹⁶⁶ Er(¹⁸ O,4n γ), ¹⁶⁸ Er(¹⁶ O,4n γ), $\Delta\pi$ =no from level scheme.
		247.0 3	93 25	1514.63 4-	E2		0.1662	α (K)=0.0977 <i>14</i> ; α (L)=0.0519 <i>8</i> ; α (M)=0.01297 <i>20</i> ; α (N)=0.00312 <i>5</i> ; α (O)=0.000479 <i>7</i>
		355.9 <i>3</i>	100 25	1405.55 5+	E1		0.01636	$\alpha(\mathbf{K}) = 9.49 \times 10^{-14}$ $\alpha(\mathbf{K}) = 0.01362 \ 20; \ \alpha(\mathbf{L}) = 0.00211 \ 3; \ \alpha(\mathbf{M}) = 0.000482 \ 7;$ $\alpha(\mathbf{N}) = 0.0001168 \ 17; \ \alpha(\mathbf{O}) = 1.97 \times 10^{-5} \ 3$
								α (P)=1.300×10 ⁻⁶ <i>19</i> Mult.: D from $\gamma(\theta)$ in ¹⁶⁶ Er(¹⁸ O,4n γ), ¹⁶⁸ Er(¹⁶ O,4n γ), $\Delta\pi$ =yes
		966.3 <i>3</i>	89 18	795.07 6+	E1+M2	-0.35 30	0.005 6	from level scheme. $\alpha(K)=0.004\ 5;\ \alpha(L)=0.0007\ 8;\ \alpha(M)=0.00016\ 18;\ \alpha(N)=4.E-5\ 5;$ $\alpha(O)=7.E-6\ 8;\ \alpha(P)=5.E-7\ 6$
1767.63	10+	510.1 2	100	1257.45 8+	E2		0.0217	α (K)=0.01637 23; α (L)=0.00407 6; α (M)=0.000976 14; α (N)=0.000236 4; α (O)=3.83×10 ⁻⁵ 6 α (P)=1.739×10 ⁻⁶ 25
1862.54	7-	101.4 7 235.3 3	1.6 <i>16</i> 14 8	1761.43 6 ⁻ 1627.33 6 ⁺	[E1]		0.0442	$\alpha(K)=0.0366\ 6;\ \alpha(L)=0.00588\ 9;\ \alpha(M)=0.001345\ 20;\ \alpha(N)=0.000325$ $5;\ \alpha(O)=5.42\times10^{-5}\ 8$ $\alpha(P)=3.34\times10^{-6}\ 5$ $B(E1)(W,u,)>4.5\times10^{-6}$
		258.0 <i>3</i>	74 14	1604.44 5-	E2		0.1449	I _γ : other: 50 17 from ¹⁵⁰ Nd(³⁶ S,6nγ):Delayed. α (K)=0.0872 13; α (L)=0.0437 7; α (M)=0.01090 16; α (N)=0.00263 4;

10

$\gamma(^{180}\text{Os})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α	Comments
1862.54	7-	483.4 <i>3</i>	33 6	1378.95 6+	E1+M2	+0.09 8	0.010 5	$\alpha(O)=0.000403 \ 6$ $\alpha(P)=8.54\times10^{-6} \ I3$ B(E2)(W.u.)>12 $\alpha(K)=0.008 \ 4; \ \alpha(L)=0.0013 \ 7; \ \alpha(M)=0.00030 \ I6; \ \alpha(N)=7.E-5 \ 4; \ \alpha(O)=1.2\times10^{-5} \ 7; \ \alpha(P)=9.E-7 \ 5$ $B(E1)(W.u.)>1.2\times10^{-6}$ $Mult : D+O from \alpha(0) in \frac{166}{2}Er(\frac{18}{2}O 4mc) \frac{168}{2}Er(\frac{16}{2}O 4mc)$
		604.8 <i>3</i>	100 <i>17</i>	1257.45 8+	E1(+M2)	+0.05 5	0.0054 9	$\Delta \pi$ =yes from level scheme. I _γ : 0ther: ≤14 from ¹⁵⁰ Nd(³⁶ S,6nγ):Delayed. α (K)=0.0045 7; α (L)=0.00068 13; α (M)=0.00016 3; α (N)=3.8×10 ⁻⁵ 7; α (O)=6.4×10 ⁻⁶ 12 α (P)=4.6×10 ⁻⁷ 9
		1067.5 <i>3</i>	53	795.07 6 ⁺	[E1]		1.73×10 ⁻³	B(E1)(W.u.)>1.9×10 ⁻⁶ α (K)=0.001458 2 <i>I</i> ; α (L)=0.000210 3; α (M)=4.74×10 ⁻⁵ 7; α (N)=1.152×10 ⁻⁵ <i>I</i> 7; α (O)=1.98×10 ⁻⁶ 3 α (P)=1.469×10 ⁻⁷ 2 <i>I</i>
1877.12	6+	361.4 3	100 17	1515.67 4+	E2		0.0534	B(E1)(W.u.)>1.7×10 ⁻⁸ α (K)=0.0370 6; α (L)=0.01251 18; α (M)=0.00306 5; α (N)=0.000740 11; α (O)=0.0001165 17 α (P)=3.81×10 ⁻⁶ 6 E _Y : from ¹⁶⁶ Er(¹⁸ O,4n\gamma), ¹⁶⁸ Er(¹⁶ O,4n\gamma). Other: 363.2 5 in
		471.3 <i>3</i> 498.4 <i>5</i> 680.2 ^{<i>c</i>} <i>5</i>	34 8 14 <i>12</i> ≤8	1405.55 5 ⁺ 1378.95 6 ⁺ 1196.83 4 ⁺	[E2]		0.01112	¹⁵⁰ Nd(³⁶ S,6n γ), ¹⁵⁰ Nd(³⁴ S,4n γ). E_{γ},I_{γ} : from ¹⁵⁰ Nd(³⁶ S,6n γ):Delayed. α (K)=0.00876 <i>13</i> ; α (L)=0.00181 <i>3</i> ; α (M)=0.000426 <i>6</i> ;
		824.6 <i>3</i>	12 7	1052.66 4+	[E2]		0.00735	$\alpha(N)=0.0001033 \ 15$ $\alpha(O)=1.708 \times 10^{-5} \ 25; \ \alpha(P)=9.40 \times 10^{-7} \ 14$ $E_{\gamma},I_{\gamma}: \text{ from } {}^{150}\text{Nd}({}^{36}\text{S},6n\gamma):\text{Delayed.}$ $\alpha(K)=0.00591 \ 9; \ \alpha(L)=0.001108 \ 16; \ \alpha(M)=0.000259 \ 4;$
		1082.1 <i>3</i>	51 8	795.07 6+	M1+E2	-0.6 3	0.0079 10	$\alpha(\mathbf{N})=0.28\times10^{-7} \text{ g}$ $\alpha(\mathbf{P})=6.35\times10^{-7} \text{ g}$ $\mathbf{E}_{\gamma},\mathbf{I}_{\gamma}: \text{ from } {}^{150}\text{Nd}({}^{36}\text{S},6n\gamma):\text{Delayed.}$ $\alpha(\mathbf{K})=0.0066 \text{s}; \ \alpha(\mathbf{L})=0.00102 11; \ \alpha(\mathbf{M})=0.000234 25;$ $\alpha(\mathbf{N})=5.7\times10^{-5} \text{s}; \ \alpha(\mathbf{O})=9.9\times10^{-6} 11$
		1468.5 <i>3</i>	45 9	408.63 4+	E2		0.00243	$\begin{aligned} &\alpha(P) = 7.4 \times 10^{-7} \ 9 \\ &I_{\gamma}: \text{ from } ^{150}\text{Nd}(^{36}\text{S},6n\gamma):\text{Delayed. Others: } 15 \ 8 \ \text{from } ^{150}\text{Nd}(^{36}\text{S},6n\gamma), ^{150}\text{Nd}(^{34}\text{S},4n\gamma) \ \text{and } 62 \ 12 \ \text{from } ^{166}\text{Er}(^{18}\text{O},4n\gamma), ^{168}\text{Er}(^{16}\text{O},4n\gamma). \\ &\alpha(K) = 0.00197 \ 3; \ \alpha(L) = 0.000310 \ 5; \ \alpha(M) = 7.10 \times 10^{-5} \ 10; \\ &\alpha(N) = 1.728 \times 10^{-5} \ 25; \ \alpha(O) = 2.96 \times 10^{-6} \ 5 \\ &\alpha(P) = 2.10 \times 10^{-7} \ 3 \end{aligned}$

11

γ (¹⁸⁰Os) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α	Comments
1881.1	7+	475.5 3	100 33	1405.55 5+	(E2)		0.0258	I _γ : from ¹⁵⁰ Nd(³⁶ S,6nγ):Delayed. Others: 8 8 from ¹⁵⁰ Nd(³⁶ S,6nγ), ¹⁵⁰ Nd(³⁴ S,4nγ) and 42 8 from ¹⁶⁶ Er(¹⁸ O,4nγ), ¹⁶⁸ Er(¹⁶ O,4nγ). α (K)=0.0192 3; α (L)=0.00505 8; α (M)=0.001216 18; α (N)=0.000294 5; α (O)=4.74×10 ⁻⁵ 7 α (D)=2.03×10 ⁻⁶ 2
		1086.2 4	53 20	795.07 6+	M1+E2	<-8	0.0067 25	$\alpha(P)=2.03\times 10^{-5} S$ $\alpha(K)=0.0056 \ 21; \ \alpha(L)=0.0009 \ 3; \ \alpha(M)=0.00020 \ 7; \ \alpha(N)=4.9\times 10^{-5} \ 16; \ \alpha(O)=8.E-6 \ 3 \ \alpha(P)=6.2\times 10^{-7} \ 24 \ Mult.: D+Q \ from \ \gamma(\theta) \ in \ ^{166}Er(^{18}O,4n\gamma), ^{168}Er(^{16}O,4n\gamma), \ \Delta\pi=no$
1928.76	7-	51.6 2	100 25	1877.12 6+	E1		0.456 8	from level scheme. $\alpha(L)=0.352$ 7; $\alpha(M)=0.0816$ 15; $\alpha(N)=0.0193$ 4; $\alpha(O)=0.00298$ 6; $\alpha(P)=0.0001206$ 20
		301.6 5		1627.33 6+	[E1]		0.0241	B(E1)(W.u.)= 3.8×10^{-5} 12 α (K)= 0.0201 3; α (L)= 0.00316 5; α (M)= 0.000721 11; α (N)= 0.000174 3; α (O)= 2.93×10^{-5} 5 α (P)= 1.88×10^{-6} 3 For $(150) \times 1366$ (∞) D by $(150) \times 10^{-6}$ C
		324.0 7	35 7	1604.44 5-	(E2)		0.0729 12	E _γ : from ¹⁵⁰ Nd(³⁰ S,6nγ):Delayed. $\alpha(K)=0.0486 \ 8; \ \alpha(L)=0.0185 \ 3; \ \alpha(M)=0.00455 \ 8; \ \alpha(N)=0.001098 \ 18; \ \alpha(O)=0.000172 \ 3 \ \alpha(P)=4.93\times10^{-6} \ 8 \ B(E2)(W.u.)=0.023 \ 6 \ Mult.: (Q) from R(DCO) in 150Nd(36S,6nγ),150Nd(34S,4nγ), \Delta\pi=no$
		550.0 <i>3</i>		1378.95 6+	[E1]		0.00626	from level scheme. $\alpha(K)=0.00525 \ 8; \ \alpha(L)=0.000787 \ 11; \ \alpha(M)=0.000179 \ 3; \ \alpha(N)=4.34\times10^{-5} \ 6; \ \alpha(O)=7.39\times10^{-6} \ 11 \ \alpha(P)=5.16\times10^{-7} \ 8$
		670.9 4	33 8	1257.45 8+	(E1)		0.00417	E _γ : from ¹⁵⁰ Nd(³⁶ S,6nγ):Delayed. α (K)=0.00350 5; α (L)=0.000518 8; α (M)=0.0001175 17; α (N)=2.85×10 ⁻⁵ 4; α (O)=4.88×10 ⁻⁶ 7 α (P)=3.48×10 ⁻⁷ 5
		1133.8 4	49 10	795.07 6+	E1(+M2)	+0.02 6	0.00156 12	B(E1)(W.u.)=5.7×10 ⁻⁵ 17 $\alpha(K)=0.00132 \ 10; \ \alpha(L)=0.000189 \ 16; \ \alpha(M)=4.3\times10^{-5} \ 4; \ \alpha(N)=1.04\times10^{-5} \ 9; \ \alpha(O)=1.79\times10^{-6} \ 15$ $\alpha(P)=1.33\times10^{-7} \ 12$ B(E1)(W.u.)=1.8×10 ⁻⁹ 5
1987.0 2086.2	8 ⁻ 8 ⁻	(59) 223.3 <i>4</i>	14 <i>4</i>	1928.76 7 ⁻ 1862.54 7 ⁻	M1+E2	+0.28 5	0.555 13	$ α(K)=0.455 \ 12; \ α(L)=0.0773 \ 12; \ α(M)=0.0178 \ 3; \ α(N)=0.00435 \ 7; α(O)=0.000745 \ 12 α(P)=5.26×10-5 \ 14 Mult.: D+Q from γ(θ) in 166Er(18O,4nγ), 168Er(16O,4nγ), Δπ=no from level scheme.$

12

н

$\gamma(^{180}\text{Os})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α	Comments
2086.2	8-	324.9 3	100 14	1761.43 6-	E2		0.0723	α (K)=0.0482 7; α (L)=0.0183 3; α (M)=0.00451 7; α (N)=0.001087 $l6$; α (O)=0.0001698 25 α (P)=4.90×10 ⁻⁶ 7
2113.1	9-	126.2 3	92 25	1987.0 8-	M1+E2	-1.4 3	2.13 14	$\alpha(K) = 1.15 \ 22; \ \alpha(L) = 0.74 \ 7; \ \alpha(M) = 0.185 \ 17; \ \alpha(N) = 0.045 \ 4; \alpha(O) = 0.0068 \ 6; \ \alpha(P) = 0.00013 \ 3 Mult.: D+Q \ from \ \gamma(\theta) \ in \ ^{166}Er(^{18}O,4n\gamma), ^{168}Er(^{16}O,4n\gamma), \ large$
		184.0.5	100 33	1928 76 7-				value of δ favors M1+E2 assignment. E : observed only in ¹⁵⁰ Nd(³⁶ S 6n ₂) ¹⁵⁰ Nd(³⁴ S 4n ₂)
2175.69	9-	313.1 2	100 55	1862.54 7-	E2		0.0805	$\alpha(\text{K})=0.0530 \ \text{s}; \ \alpha(\text{L})=0.0209 \ \text{3}; \ \alpha(\text{M})=0.00517 \ \text{8}; \ \alpha(\text{N})=0.001247 \ \text{18}; \ \alpha(\text{O})=0.000194 \ \text{3} \ \alpha(\text{O})=0.00194 \ \text{3} \ \alpha(\text{O})=0.0019$
		408.2 3	22 4	1767.63 10+	E1		0.01197	$\begin{array}{l} \alpha(P)=5.55\times10^{-6}8\\ \alpha(K)=0.00998 \ 14; \ \alpha(L)=0.001533 \ 22; \ \alpha(M)=0.000349 \ 5;\\ \alpha(N)=8.46\times10^{-5} \ 12 \end{array}$
								$\alpha(O)=1.432 \times 10^{-5} 21; \ \alpha(P)=9.63 \times 10^{-7} 14$ Mult.: D from $\gamma(\theta)$ in ¹⁵⁰ Nd(³⁶ S,6n γ), ¹⁵⁰ Nd(³⁴ S,4n γ), $\Delta \pi$ =yes from level scheme.
		918.6 <i>3</i>	11 4	1257.45 8+	E1(+M2)	-0.01 11	0.0023 5	$\alpha(K)=0.0019 \ 4; \ \alpha(L)=0.00028 \ 7; \ \alpha(M)=6.3\times10^{-5} \ 16; \ \alpha(N)=1.5\times10^{-5} \ 4; \ \alpha(O)=2.6\times10^{-6} \ 7 \ \alpha(P)=1.9\times10^{-7} \ 5$
								Mult.: D+Q from $\gamma(\theta)$ in ¹⁶⁶ Er(¹⁸ O,4n γ), ¹⁶⁸ Er(¹⁶ O,4n γ), $\Delta \pi$ =yes from level scheme.
2275.9	10-	162.9 <i>3</i>	48 8	2113.1 9-	M1+E2	-0.94 16	1.06 7	$\alpha(K)=0.75 \ 8; \ \alpha(L)=0.238 \ 11; \ \alpha(M)=0.058 \ 3; \ \alpha(N)=0.0140 \ 8; \ \alpha(O)=0.00223 \ 9; \ \alpha(P)=8.4\times10^{-5} \ 10$
								Mult.: D+Q from $\gamma(\theta)$ in ¹⁶⁶ Er(¹⁸ O,4n γ), ¹⁶⁸ Er(¹⁶ O,4n γ), $\Delta \pi$ =no from level scheme.
		289.0 3	100 16	1987.0 8-	E2		0.1022	$\alpha(K)=0.0650 \ 10; \ \alpha(L)=0.0282 \ 5; \ \alpha(M)=0.00700 \ 11; \ \alpha(N)=0.001688 \ 25; \ \alpha(O)=0.000261 \ 4 \ \alpha(D)=6.40\times10^{-6} \ 10$
2286.06	(7 ⁻ ,8 ⁻)	110.5 3	23 8	2175.69 9-	E2		2.92 6	$\alpha(K) = 0.680 \ l0; \ \alpha(L) = 1.69 \ 4; \ \alpha(M) = 0.432 \ 9; \ \alpha(N) = 0.1035 \ 20; \ \alpha(O) = 0.0153 \ 3$
		423.4 3	100 14	1862.54 7-	M1+E2	-0.40 20	0.093 9	$\alpha(P)=6.63\times10^{-5} 11$ $\alpha(K)=0.077 8; \alpha(L)=0.0126 8; \alpha(M)=0.00291 18; \alpha(N)=0.00071 5;$ $\alpha(O)=0.000122 8$ $\alpha(D)=0.000122 8$
		1028.7 3	45 9	1257.45 8+	E1(+M2)	+0.02 24	0.0019 15	$\alpha(P)=8.8 \times 10^{-5} 10^{-5}$ $\alpha(K)=0.0016 \ 13; \ \alpha(L)=0.00023 \ 21; \ \alpha(M)=5.E-5 \ 5; \ \alpha(N)=1.2 \times 10^{-5}$ $12; \ \alpha(O)=2.1 \times 10^{-6} \ 21$
								$\alpha(P)=1.6\times10^{-7}$ 16 Mult : $D(+O)$ from $\alpha(\theta)$ in ${}^{166}\text{Er}/{}^{18}O$ (max) ${}^{168}\text{Er}/{}^{16}O$ (max)
2308.9	12+	541.2 2	100	1767.63 10+	E2		0.0188	Mult.: D(+Q) from $\gamma(\theta)$ in ¹¹ -Er(¹⁰ O,4n γ), ¹⁰ -Er(¹⁰ O,4n γ), $\Delta \pi$ =yes from level scheme. $\alpha(K)=0.01434\ 2I;\ \alpha(L)=0.00341\ 5;\ \alpha(M)=0.000816\ I2;$ $\alpha(N)=0.000198\ 3;\ \alpha(O)=3.22\times10^{-5}\ 5$ $\alpha(P)=1.528\times10^{-6}\ 22$

13

$\gamma(^{180}\text{Os})$ (continued)

E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α	Comments
2410.8	9+	529.7 3	100 31	1881.1	7+	E2		0.0198	$\begin{aligned} &\alpha(\text{K}) = 0.01504 \ 22; \ \alpha(\text{L}) = 0.00364 \ 6; \ \alpha(\text{M}) = 0.000870 \ 13; \\ &\alpha(\text{N}) = 0.000211 \ 3; \ \alpha(\text{O}) = 3.42 \times 10^{-5} \ 5 \\ &\alpha(\text{P}) = 1.601 \times 10^{-6} \ 23 \end{aligned}$
2463.0	10-	1153.4 <i>3</i> 287.4 <i>3</i>	44 <i>19</i> 14 <i>4</i>	1257.45 2175.69	8+ 9-	M1(+E2)	-0.07 20	0.290 13	$\alpha(K)=0.240 \ 12; \ \alpha(L)=0.0384 \ 9; \ \alpha(M)=0.00881 \ 17; \ \alpha(N)=0.00215 \ 4; \ \alpha(O)=0.000372 \ 9 \ \alpha(P)=2.77\times10^{-5} \ 14 \ Mult.: D+O \ from \ \gamma(\theta) \ in \ ^{166}Er(^{18}O,4n\gamma), ^{168}Er(^{16}O,4n\gamma),$
		376.7 3	100 13	2086.2	8-	E2		0.0476	$\Delta \pi$ =no from level scheme. $\alpha(K)=0.03345; \alpha(L)=0.0108416; \alpha(M)=0.002654; \alpha(N)=0.00063910; \alpha(O)=0.000101115$
2467.1	11-	191.3 <i>4</i>	24 5	2275.9	10-	M1+E2	-1.8 3	0.51 4	$\alpha(F) = 3.40 \times 10^{-5} = 5$ $\alpha(K) = 0.32 \ 4; \ \alpha(L) = 0.141 \ 4; \ \alpha(M) = 0.0350 \ 10; \ \alpha(N) = 0.00844$ $22; \ \alpha(O) = 0.00131 \ 3$ $\alpha(R) = 24 \times 10^{-5} = 5$
		353.9 <i>3</i>	100 15	2113.1	9-	E2		0.0566	$\begin{array}{l} \alpha(P)=5.4\times10^{-5} \\ \alpha(K)=0.0389 \ 6; \ \alpha(L)=0.01347 \ 20; \ \alpha(M)=0.00330 \ 5; \\ \alpha(N)=0.000797 \ 12; \ \alpha(O)=0.0001254 \ 18 \\ \alpha(D)=0.000197 \ 6 \end{array}$
2544.32	11-	368.6 2	100 10	2175.69	9-	E2		0.0506	$\alpha(\mathbf{F}) = 4.00 \times 10^{-6} \ \delta$ $\alpha(\mathbf{K}) = 0.0325 \ 5; \ \alpha(\mathbf{L}) = 0.01168 \ 17; \ \alpha(\mathbf{M}) = 0.00286 \ 4; \ \alpha(\mathbf{N}) = 0.000699 \ 10; \ \alpha(\mathbf{O}) = 0.0001089 \ 16$
		776.7 3	3.9 <i>13</i>	1767.63	10+	E1(+M2)	-0.01 25	0.003 4	$\alpha(P)=3.64\times10^{-6} 6$ $\alpha(K)=0.003 3; \ \alpha(L)=0.0004 5; \ \alpha(M)=9.E-5 12; \ \alpha(N)=2.E-5 3;$ $\alpha(O)=4.E-6 5; \ \alpha(P)=3.E-7 4$ Mult.: D+Q from $\gamma(\theta)$ in ¹⁶⁶ Er(¹⁸ O,4n\gamma), ¹⁶⁸ Er(¹⁶ O,4n\gamma), $\Delta\pi=$ yes from level scheme. E : from ¹⁶⁶ Er(¹⁸ O,4n\alpha)) ¹⁶⁸ Er(¹⁶ O,4n\alpha)
2599.1		170.0 <i>3</i> 321.9 <i>5</i>	100 <i>43</i> 85 <i>57</i>	2429.1 2275.9	10-				$L_{\gamma}. \text{ from } L_{\Gamma}(0, \tau_{\Pi}\gamma), L_{\Gamma}(0, \tau_{\Pi}\gamma).$
2635.7		172.9 3 460.0 3 549.7 3	17 17 50 17 100 90	2463.0 2175.69 2086.2	10 9 ⁻ 8 ⁻	D+Q			
2675.41	(9 ⁻ ,10 ⁻)	389.4 2	100 10	2286.06	(7 ⁻ ,8 ⁻)	E2		0.0435	$\alpha(K)=0.0308 5; \alpha(L)=0.00968 14; \alpha(M)=0.00236 4; \alpha(N)=0.000570 8; \alpha(O)=9.03\times10^{-5} 13$
		500.0 3	5.9 20	2175.69	9-	D(+Q)	+0.10 20	0.0229	$\alpha(P) = 3.20 \times 10^{-4} \text{ S}^{-5}$ I _{γ} : from ¹⁵⁰ Nd(³⁶ S,6n γ), ¹⁵⁰ Nd(³⁴ S,4n γ). Other: 51 <i>14</i> in ¹⁶⁶ Er(¹⁸ O.4n γ), ¹⁶⁸ Er(¹⁶ O.4n γ).
2683.4	12-	907.8 <i>3</i> 216.4 <i>4</i>	47 9 22 5	1767.63 2467.1	10 ⁺ 11 ⁻	D(+Q) M1+E2	-0.05 <i>12</i> -2.5 5	0.00234 0.307 <i>24</i>	$\alpha(K)=0.191\ 25;\ \alpha(L)=0.0880\ 15;\ \alpha(M)=0.0219\ 4;\alpha(N)=0.00527\ 10;\ \alpha(O)=0.000814\ 13\alpha(P)=2.0\times10^{-5}\ 3$ Mult.: D+Q from $\gamma(\theta)$ in ¹⁶⁶ Er(¹⁸ O,4n γ), ¹⁶⁸ Er(¹⁶ O,4n γ), $\Delta\pi$ =no from level scheme.

14

γ (¹⁸⁰Os) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α	Comments
2683.4	12-	407.4 3	100 14	2275.9	10-	E2		0.0385	$\alpha(K)=0.0276 \ 4; \ \alpha(L)=0.00831 \ 12; \ \alpha(M)=0.00202 \ 3; \ \alpha(N)=0.000488 \ 7; \\ \alpha(O)=7.77\times10^{-5} \ 11 \\ \alpha(P)=2.88\times10^{-6} \ 4$
2695.3 2875.3	12+ 14+	387.2 <i>5</i> 566.1 <i>2</i>	100 100	2308.9 2308.9	12 ⁺ 12 ⁺	E2		0.01690	α (K)=0.01298 <i>19</i> ; α (L)=0.00300 <i>5</i> ; α (M)=0.000714 <i>10</i> ; α (N)=0.0001730 <i>25</i> α (O)=2.82×10 ⁻⁵ <i>4</i> ; α (P)=1.386×10 ⁻⁶ <i>20</i>
2915.5		220.7 ^c 3 316.1 3	8 4 100 <i>1</i> 7	2695.3 2599.1	12+	E2		0.0783	$\alpha(K)=0.0517 \ 8; \ \alpha(L)=0.0202 \ 3; \ \alpha(M)=0.00499 \ 8; \ \alpha(N)=0.001203 \ 18; \ \alpha(O)=0.000188 \ 3 \ \alpha(P)=5.23 \times 10^{-6} \ 8$
		1147.5 3	33 13	1767.63	10+	(E2)		0.00379	$\alpha(K) = 0.00312 5; \ \alpha(L) = 0.000520 8; \ \alpha(M) = 0.0001197 17; \ \alpha(N) = 2.91 \times 10^{-5} 4; \ \alpha(O) = 4.95 \times 10^{-6} 7 \alpha(O) = 3.33 \times 10^{-7} 5$
2918.8	13-	235.6 3	11 3	2683.4	12-	M1+E2	-1.8 5	0.27 5	$\alpha(P)=5.55\times 10^{-5} \text{ s}$ $\alpha(K)=0.18 \text{ s}; \ \alpha(L)=0.0636 \ 11; \ \alpha(M)=0.01560 \ 24; \ \alpha(N)=0.00377 \ 6; \ \alpha(O)=0.000593 \ 13 \ \alpha(P)=1.9\times 10^{-5} \ 5 \ \text{Mult}$
		451.5 3	100 15	2467.1	11-	E2		0.0294	Null. D+Q from $\gamma(6)$ in El(0,4hy), El(0,4hy), Δt =10 from level scheme. $\alpha(K)=0.0217 \ 3; \ \alpha(L)=0.00595 \ 9; \ \alpha(M)=0.001436 \ 21; \ \alpha(N)=0.000348 \ 5; \ \alpha(O)=5.57\times10^{-5} \ 8 \ (O)=2.28\times10^{-6} \ 4$
2919.6	12-	374.7 6	18 4	2544.32	11-	M1+E2		0.10 5	
		456.5 <i>3</i>	100 12	2463.0	10-	E2		0.0286	a(K)=0.0211 3; α(L)=0.00574 9; α(M)=0.001386 20; α(N)=0.000335 5; α(O)= $5.38 \times 10^{-5} 8$ α(P)= $2.23 \times 10^{-6} 4$
2925.4		289.9 <i>3</i> 380.9 <i>3</i> 462.0 ^c 10	100 <i>40</i> 20 <i>10</i> 30 <i>20</i>	2635.7 2544.32 2463.0	11 ⁻ 10 ⁻				u(1)=2.25×10 +
2982.0	13-	437.8 2	100 19	2544.32	11-	E2		0.0319	α (K)=0.0233 4; α (L)=0.00657 10; α (M)=0.001589 23; α (N)=0.000384 6; α (O)=6.15×10 ⁻⁵ 9 α (P)=2.45×10 ⁻⁶ 4
		673.2 3	54	2308.9	12+	E1		0.00414	$ α(K)=0.00348 5; α(L)=0.000514 8; α(M)=0.0001167 17; α(N)=2.83×10^{-5} 4; α(O)=4.85×10^{-6} 7 α(P)=3.45×10^{-7} 5 Mult.: D from γ(θ) in 166Er(18O,4nγ), 168Er(16O,4nγ), Δπ=yes from $
3007.9	14+	312.0 3	18 5	2695.3	12+	(E2)		0.0814	level scheme. $\alpha(K)=0.0534 \ 8; \ \alpha(L)=0.0212 \ 3; \ \alpha(M)=0.00524 \ 8; \ \alpha(N)=0.001263 \ 19; \ \alpha(O)=0.000197 \ 3 \ \alpha(P)=5.40\times10^{-6} \ 8$

15

 $^{180}_{76}\mathrm{Os}_{104}$ -15

Adopted	Levels,	Gammas	(continued)
---------	---------	--------	-------------

γ ⁽¹⁰⁰ Os) (continued)
--

E _i (level)	J^{π}_i	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α	Comments
3007.9	14+	699.3 2	100 10	2308.9	12+	E2		0.01046	$\alpha(K)=0.00827 \ 12; \ \alpha(L)=0.001678 \ 24; \ \alpha(M)=0.000395 \ 6; \\ \alpha(N)=9.59\times10^{-5} \ 14 \\ \alpha(O)=1.589\times10^{-5} \ 23; \ \alpha(P)=8.88\times10^{-7} \ 13$
3139.3	(11 ⁻ ,12 ⁻)	464.1 2 593.3 <i>15</i> 830.1 <i>3</i>	100 <i>10</i> 5.7 <i>20</i> 18 7	2675.41 2544.32 2308.9	(9 ⁻ ,10 ⁻) 11 ⁻ 12 ⁺				
3176.3	14-	257.3 4	10 3	2918.8	13-	M1		0.393	$\alpha(K)=0.326\ 5;\ \alpha(L)=0.0522\ 8;\ \alpha(M)=0.01196\ 18;$ $\alpha(N)=0.00292\ 5;\ \alpha(O)=0.000504\ 8$ $\alpha(P)=3.77\times10^{-5}\ 6$
									Mult.: D from R(DCO) in ¹³⁰ Nd(³⁰ S,6n γ), ¹³⁰ Nd(³⁴ S,4n γ), $\Delta \pi$ =no from level scheme.
		493.0 <i>3</i>	100 18	2683.4	12-	E2		0.0236	$\begin{aligned} &\alpha(\mathbf{K}) = 0.01768\ 25;\ \alpha(\mathbf{L}) = 0.00452\ 7;\ \alpha(\mathbf{M}) = 0.001085\ 16;\\ &\alpha(\mathbf{N}) = 0.000263\ 4;\ \alpha(\mathbf{O}) = 4.24 \times 10^{-5}\ 6\\ &\alpha(\mathbf{P}) = 1.87 \times 10^{-6}\ 3 \end{aligned}$
3246.3		264.4 <i>3</i> 321.0 <i>3</i>	<44 100 <i>33</i>	2982.0 2925.4	13-	E2		0.0749	α (K)=0.0497 7; α (L)=0.0191 3; α (M)=0.00471 7; α (N)=0.001137 17; α (O)=0.000177 3 α (P)=5.04×10 ⁻⁶ 8
		326.8 ^b 5 702.3 5	44 22 22 11	2919.6 2544.32	12 ⁻ 11 ⁻				
		782.9 5	33 22	2463.0	10-				
3342.8		427.3 3	100	2915.5		E2		0.0340	$\alpha(K)=0.0247 \ 4; \ \alpha(L)=0.00710 \ 10; \ \alpha(M)=0.001721 \ 25; \ \alpha(N)=0.000416 \ 6; \ \alpha(O)=6.65\times10^{-5} \ 10 \ \alpha(P)=2.59\times10^{-6} \ 4$
3402.7	16+	394.9 <i>3</i>	48 5	3007.9	14+	E2		0.0419	$\alpha(K) = 0.02985; \alpha(L) = 0.0092314; \alpha(M) = 0.002254; \alpha(N) = 0.0005438; \alpha(O) = 8.62 \times 10^{-5}13$
		527.3 2	100 8	2875.3	14+	E2		0.0200	$\begin{array}{l} \alpha(P)=3.10\times10^{-6} \ 5\\ \alpha(K)=0.01519 \ 22; \ \alpha(L)=0.00369 \ 6; \ \alpha(M)=0.000882 \ 13; \\ \alpha(N)=0.000214 \ 3; \ \alpha(O)=3.47\times10^{-5} \ 5 \end{array}$
3442.7	15-	266.4 <i>3</i>	8 2	3176.3	14-	M1+E2	-0.98 21	0.25 3	$\alpha(P)=1.617\times10^{-6} 23$ $\alpha(K)=0.19 3; \alpha(L)=0.0431 12; \alpha(M)=0.01025 21;$ $\alpha(N)=0.00249 6; \alpha(O)=0.000408 14$ $\alpha(P)=2.1\times10^{-5} 4$
									Mult.: D+Q from $\gamma(\theta)$ in ¹⁶⁶ Er(¹⁸ O,4n γ), ¹⁶⁸ Er(¹⁶ O,4n γ),
		523.8 2	100 10	2918.8	13-	E2		0.0203	$\Delta \pi$ =no from level scheme. $\alpha(K)=0.01542\ 22;\ \alpha(L)=0.00376\ 6;\ \alpha(M)=0.000900\ 13;$ $\alpha(N)=0.000218\ 3;\ \alpha(O)=3.54\times10^{-5}\ 5$
3452.1	14-	467.6 14	18 5	2982.0	13-	M1+E2	+0.41 7	0.072 3	$\begin{array}{l} \alpha(\mathrm{P}) = 1.641 \times 10^{-6} \ 23 \\ \alpha(\mathrm{K}) = 0.0591 \ 22; \ \alpha(\mathrm{L}) = 0.0096 \ 3; \ \alpha(\mathrm{M}) = 0.00221 \ 6; \\ \alpha(\mathrm{N}) = 0.000540 \ 15; \ \alpha(\mathrm{O}) = 9.3 \times 10^{-5} \ 3 \end{array}$

16

					A	Adopted L	evels, Gammas (continued)	
						<u> </u>	¹⁸⁰ Os) (continued	1)	
E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [‡]	δ^{\ddagger}	α	Comments
									$\alpha(P)=6.7\times10^{-6} 3$ Mult.: D+Q from $\gamma(\theta)$ in $^{166}\text{Er}(^{18}\text{O},4n\gamma),^{168}\text{Er}(^{16}\text{O},4n\gamma), \Delta\pi=\text{no from level}$
3452.1	14-	532.3 3	100 18	2919.6	12-	E2		0.0196	$\alpha(K)=0.01488\ 21;\ \alpha(L)=0.00359\ 5;\ \alpha(M)=0.000857\ 12;$ $\alpha(N)=0.000208\ 3;\ \alpha(O)=3.38\times10^{-5}\ 5$ $\alpha(P)=1\ 584\times10^{-6}\ 23$
3476.4	15-	494.4 2	100 <i>13</i>	2982.0	13-	E2		0.0234	$\alpha(K) = 0.01757 \ 25; \ \alpha(L) = 0.00448 \ 7; \ \alpha(M) = 0.001076 \ 16; \alpha(N) = 0.000260 \ 4; \ \alpha(O) = 4.21 \times 10^{-5} \ 6 \alpha(P) = 1.86 \times 10^{-6} \ 3$
		601.1 5	94	2875.3	14+	E1		0.00521	$\begin{aligned} \alpha(K) &= 0.00437 \ 7; \ \alpha(L) &= 0.000651 \ 10; \ \alpha(M) &= 0.0001479 \ 21; \\ \alpha(N) &= 3.59 \times 10^{-5} \ 5; \ \alpha(O) &= 6.13 \times 10^{-6} \ 9 \\ \alpha(P) &= 4.32 \times 10^{-7} \ 6 \\ \text{Mult.: D from } \gamma(\theta) \ \text{in} \ {}^{166}\text{Er}({}^{18}\text{O},4n\gamma), {}^{168}\text{Er}({}^{16}\text{O},4n\gamma), \end{aligned}$
3494.8	16+	619.5 2	100	2875.3	14+	E2		0.01371	$\Delta \pi$ =yes from level scheme. $\alpha(K)=0.01068 \ 15; \ \alpha(L)=0.00232 \ 4; \ \alpha(M)=0.000551 \ 8;$ $\alpha(N)=0.0001336 \ 19; \ \alpha(O)=2.20\times10^{-5} \ 3$ $\alpha(P)=1 \ 143\times10^{-6} \ 16$
3629.2		153.1 <i>5</i> 176.2 <i>5</i> 383.1 <i>3</i> 647.6 <i>5</i> 709 5 <i>3</i>	<18 18 9 100 27 18 9 18 9	3476.4 3452.1 3246.3 2982.0 2919.6	15 ⁻ 14 ⁻ 13 ⁻ 12 ⁻	D+Q			
3656.7	(13 ⁻ ,14 ⁻)	517.4 2	100	3139.3	(11 ⁻ ,12 ⁻)	E2		0.0210	α (K)=0.01585 23; α (L)=0.00390 6; α (M)=0.000935 14; α (N)=0.000226 4; α (O)=3.67×10 ⁻⁵ 6 α (P)=1.685×10 ⁻⁶ 24
3703.8	(11,12)	1020.2 <i>5</i> 1236.9 <i>5</i>	100 <i>30</i> 55 <i>18</i>	2683.4 2467.1	12 ⁻ 11 ⁻	D(+Q) D(+Q)	-0.5 +2-20		
3735.3	16-	291.9 10	83	3442.7	15-	M1+E2	-10 41	0.1009 25	α(K)=0.0650 20; α(L)=0.0273 6; α(M)=0.00676 13; α(N)=0.00163 4; α(O)=0.000253 5 α(P)=6.53×10-6 22 Mult.: D+Q from γ(θ) in 166Er(18O,4nγ),168Er(16O,4nγ), Δπ=no from level scheme.
2055 -	(10.12)	559.0 3	100 10	3176.3	14-	E2		0.01741	$\alpha(K)=0.01335 \ 19; \ \alpha(L)=0.00311 \ 5; \ \alpha(M)=0.000741 \ 11; \ \alpha(N)=0.000180 \ 3; \ \alpha(O)=2.93\times10^{-5} \ 5 \ \alpha(P)=1.424\times10^{-6} \ 20$
3855.7 3886.5	(12,13)	151.9 5 543.7 3	100 100	3703.8 3342.8	(11,12)	(D+Q) E2		0.0186	α (K)=0.01419 20; α (L)=0.00337 5; α (M)=0.000805 12; α (N)=0.000195 3; α (O)=3.17×10 ⁻⁵ 5 α (P)=1 512×10 ⁻⁶ 22
3925.9	18+	523.2 2	100	3402.7	16+	E2		0.0204	$\alpha(K) = 0.01546\ 22;\ \alpha(L) = 0.00377\ 6;\ \alpha(M) = 0.000903\ 13;$

17

From ENSDF

 $^{180}_{76}\mathrm{Os}_{104}\text{--}17$

$\gamma(^{180}\text{Os})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [‡]	α	Comments
							α (N)=0.000219 3; α (O)=3.55×10 ⁻⁵ 5 α (P)=1.645×10 ⁻⁶ 23
3981.7	17-	505.4 2	100 10	3476.4 15-	E2	0.0222	$\alpha(K)=0.01671\ 24;\ \alpha(L)=0.00419\ 6;\ \alpha(M)=0.001005\ 15;\ \alpha(N)=0.000243\ 4;\ \alpha(O)=3.94\times10^{-5}\ 6$
		538.9 5	42 13	3442.7 15-	E2 #	0.0190	$\alpha(\mathbf{K}) = 0.01447 \ 21; \ \alpha(\mathbf{L}) = 0.00346 \ 5; \ \alpha(\mathbf{M}) = 0.000826 \ 12; \ \alpha(\mathbf{N}) = 0.000200 \ 3; \\ \alpha(\mathbf{O}) = 3.26 \times 10^{-5} \ 5$
4027.6	16-	575.5 <i>3</i>	100	3452.1 14-	E2	0.01625	$\alpha(P)=1.542 \times 10^{-6} 22$ $\alpha(K)=0.01252 \ 18; \ \alpha(L)=0.00286 \ 4; \ \alpha(M)=0.000680 \ 10; \ \alpha(N)=0.0001649 \ 24$ $\alpha(Q)=2.70 \times 10^{-5} \ 4; \ \alpha(P)=1.338 \times 10^{-6} \ 19$
4031.3	17-	295.8 <i>3</i>	10 3	3735.3 16-	M1+E2	0.18 9	$\alpha(O) = 2.10 \times 10^{-4}, \ \alpha(I) = 1.55 \times 10^{-17} 9; \ \alpha(N) = 0.00177 23; \ \alpha(O) = 0.00029 6$
							$\alpha(P)=1.6\times10^{-5} \ 10$ Mult.: D+Q from $\gamma(\theta)$ in ¹⁶⁶ Er(¹⁸ O,4n γ), ¹⁶⁸ Er(¹⁶ O,4n γ), $\Delta\pi$ =no from level scheme.
		554.9 5	38 11	3476.4 15-	E2 [#]	0.0177	α (K)=0.01357 20; α (L)=0.00317 5; α (M)=0.000757 11; α (N)=0.000183 3; α (O)=2.99×10 ⁻⁵ 5
		588.7 <i>3</i>	100 12	3442.7 15-	E2	0.01542	$\alpha(P)=1.447\times10^{-6} 2I$ $\alpha(K)=0.01192 \ 17; \ \alpha(L)=0.00268 \ 4; \ \alpha(M)=0.000637 \ 9; \ \alpha(N)=0.0001544 \ 22;$ $\alpha(O)=2.53\times10^{-5} \ 4$ $\alpha(P)=1.274\times10^{-6} \ 18$
4037.5	(13,14)	181.5 <i>5</i> 333.7 <i>5</i>	100 93	3855.7 (12,13) 3703.8 (11,12)			u(1)-1.2/4×10 10
4067.5 4134.6	18+	438.3 5 639.8 2	100 100	3629.2 3494.8 16 ⁺	E2	0.01274	$\alpha(K)=0.00997$ 14; $\alpha(L)=0.00213$ 3; $\alpha(M)=0.000503$ 7; $\alpha(N)=0.0001221$ 18;
110 110	10	00,10 2	100			0101271	$\alpha(O) = 2.01 \times 10^{-5} 3$ $\alpha(P) = 1.068 \times 10^{-6} 15$
4200.8	(15 ⁻ ,16 ⁻)	544.1 2	100	3656.7 (13 ⁻ ,14	-) E2 [#]	0.0186	$\alpha(K)=0.01417\ 20;\ \alpha(L)=0.00336\ 5;\ \alpha(M)=0.000803\ 12;\ \alpha(N)=0.000195\ 3;\ \alpha(O)=3.17\times10^{-5}\ 5$
4248.5	(14,15)	210.6 5 393.2 5	100 <i>40</i> 75 25	4037.5 (13,14) 3855.7 (12,13)			$u(1) = 1.510 \times 10 = 22$
4342.4	18-	311.1 <i>3</i> 607.2 <i>3</i>	<6 100 <i>20</i>	4031.3 17 ⁻ 3735.3 16 ⁻	E2	0.01435	$\alpha(K)=0.01115 \ 16; \ \alpha(L)=0.00246 \ 4; \ \alpha(M)=0.000583 \ 9; \ \alpha(N)=0.0001414 \ 20; \ \alpha(O)=2.32\times10^{-5} \ 4$
4486.6	(15,16)	238.2 5	75 25	4248.5 (14,15)			$\alpha(r) = 1.193 \times 10^{-1}$
4497.0	19-	449.1 5 515.3 2	100 <i>40</i> 100	4037.5 (13,14) 3981.7 17 ⁻	E2	0.0212	$ \begin{aligned} &\alpha(\mathrm{K}) = 0.01600\ 23;\ \alpha(\mathrm{L}) = 0.00395\ 6;\ \alpha(\mathrm{M}) = 0.000946\ 14;\ \alpha(\mathrm{N}) = 0.000229\ 4;\\ &\alpha(\mathrm{O}) = 3.72 \times 10^{-5}\ 6\\ &\alpha(\mathrm{P}) = 1.701 \times 10^{-6}\ 24 \end{aligned} $

18

 $^{180}_{76}\mathrm{Os}_{104}\text{-}18$

						Adopted	Levels, Gai	nmas (cont	tinued)
γ ⁽¹⁸⁰ Os) (continued)									
E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. [‡]	δ^{\ddagger}	α	Comments
4531.8		645.3 <i>3</i>	100	3886.5		E2 [#]		0.01250	$\alpha(K)=0.00979 \ 14; \ \alpha(L)=0.00208 \ 3; \ \alpha(M)=0.000492 \ 7; \ \alpha(N)=0.0001192 \ 17; \ \alpha(O)=1.96\times10^{-5} \ 3 \ \alpha(P)=1.049\times10^{-6} \ 15$
4542.7	20+	616.8 2	100	3925.9	18+	E2		0.01385	$\alpha(K) = 0.01078 \ I6; \ \alpha(L) = 0.00235 \ 4; \ \alpha(M) = 0.000558 \ 8; \\ \alpha(N) = 0.0001352 \ I9; \ \alpha(O) = 2.22 \times 10^{-5} \ 4 \\ \alpha(P) = 1.154 \times 10^{-6} \ I7$
4581.0		513.5 3	100	4067.5		E2 [#]		0.0213	$\alpha(K) = 0.01612 \ 23; \ \alpha(L) = 0.00399 \ 6; \ \alpha(M) = 0.000957 \ 14; \alpha(N) = 0.000232 \ 4; \ \alpha(O) = 3.75 \times 10^{-5} \ 6 \alpha(D) = 1.714 \times 10^{-6} \ 24$
4599.6	18-	572.0 <i>3</i>	100	4027.6	16-	E2		0.01649	$\alpha(P)=1.714\times10^{-7}24$ $\alpha(K)=0.01269\ 18;\ \alpha(L)=0.00291\ 4;\ \alpha(M)=0.000692\ 10;$ $\alpha(N)=0.0001679\ 24$ $\alpha(D)=2.74\times10^{-5}\ 4;\ \alpha(P)=1.355\times10^{-6}\ 19$
4651.4	19-	309.3 8	<6	4342.4	18-	M1+E2	-5.5 23	0.088 9	$\begin{array}{l} \alpha(\text{O})=2.74\times10^{-4}, \ \alpha(\text{I})=1.555\times10^{-179}\\ \alpha(\text{K})=0.059 \ 9; \ \alpha(\text{L})=0.0222 \ 7; \ \alpha(\text{M})=0.00547 \ 14; \ \alpha(\text{N})=0.00132 \ 4; \\ \alpha(\text{O})=0.000206 \ 7 \\ \alpha(\text{P})=6.1\times10^{-6} \ 10 \end{array}$
		(20.0.3	100.15	4021.2	17-	Бо#		0.01260	Mult.: D+Q from $\gamma(\theta)$ in ¹⁶⁶ Er(¹⁸ O,4n γ), ¹⁶⁸ Er(¹⁶ O,4n γ), $\Delta \pi$ =no from level scheme.
		620.0 3	100 15	4031.3	17	E2"		0.01369	$\alpha(\mathbf{K})=0.01066\ 15;\ \alpha(\mathbf{L})=0.00232\ 4;\ \alpha(\mathbf{M})=0.000550\ 8;\\ \alpha(\mathbf{N})=0.0001333\ 19;\ \alpha(\mathbf{O})=2.19\times10^{-5}\ 3\\ \alpha(\mathbf{P})=1.141\times10^{-6}\ 16$
4750.7	(16,17)	263.8 5	45 15	4486.6	(15,16)				
4770.2	(17 ⁻ ,18 ⁻)	569.4 5	100 30	4248.3	(14,15) $(15^-,16^-)$	E2		0.01667	α (K)=0.01282 <i>19</i> ; α (L)=0.00295 <i>5</i> ; α (M)=0.000702 <i>10</i> ; α (N)=0.0001701 <i>25</i>
4821.4	20+	686.8 2	100	4134.6	18+	E2		0.01088	$\alpha(O)=2.78\times10^{-5} 4; \ \alpha(P)=1.369\times10^{-6} 20$ $\alpha(K)=0.00859 \ 12; \ \alpha(L)=0.001760 \ 25; \ \alpha(M)=0.000415 \ 6;$ $\alpha(N)=0.0001006 \ 15$ $\alpha(O)=1.665\times10^{-5} 24; \ \alpha(P)=0.21\times10^{-7} \ 12$
4978.2	20-	326.8 ^b 8 635.9 <i>3</i>	6 6 100 24	4651.4 4342.4	19 ⁻ 18 ⁻	E2		0.01292	$\alpha(\text{K})=0.01010 \ 15; \ \alpha(\text{L})=0.00216 \ 3; \ \alpha(\text{M})=0.000512 \ 8; \\ \alpha(\text{N})=0.0001242 \ 18; \ \alpha(\text{O})=2.04\times10^{-5} \ 3$
5037.2	(17,18)	286.8 5	100 30	4750.7	(16,17)				$\alpha(P)=1.082\times10^{-6}$ 16
5045.0	21-	548.0 2	100	4497.0	(13,10) 19 ⁻	E2		0.0182	α (K)=0.01395 20; α (L)=0.00329 5; α (M)=0.000786 11; α (N)=0.000190 3; α (O)=3.10×10 ⁻⁵ 5
5136.2		555.2 3	100	4581.0		E2		0.01769	$\alpha(P)=1.48 \times 10^{-5} 21$ $\alpha(K)=0.01355 19; \ \alpha(L)=0.00317 5; \ \alpha(M)=0.000756 11;$ $\alpha(N)=0.000183 3; \ \alpha(O)=2.99\times 10^{-5} 5$
5164.6	(20 ⁻)	565.0 4	100	4599.6	18-				$\alpha(P) = 1.445 \times 10^{\circ} 21$

From ENSDF

 $^{180}_{76}\mathrm{Os}_{104}\text{--}19$

$\gamma(^{180}\text{Os})$ (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^π	Mult. [‡]	α	Comments
5236.5	22+	693.8 2	100	4542.7	20+	E2	0.01064	α (K)=0.00841 <i>12</i> ; α (L)=0.001713 <i>24</i> ; α (M)=0.000404 <i>6</i> ; α (N)=9.80×10 ⁻⁵ <i>14</i> α (O)=1.622×10 ⁻⁵ <i>23</i> ; α (P)=9.02×10 ⁻⁷ <i>13</i>
5255.0		723.2 3	100	4531.8		(E2) [#]	0.00972	α (K)=0.00772 <i>11</i> ; α (L)=0.001538 <i>22</i> ; α (M)=0.000362 <i>5</i> ; α (N)=8.78×10 ⁻⁵ <i>13</i> α (O)=1.457×10 ⁻⁵ <i>21</i> : α (P)=8.28×10 ⁻⁷ <i>12</i>
5293.8	21-	316.0 8	10 10	4978.2	20^{-}			
		642.3 5	100 30	4651.4	19-	E2 [#]	0.01263	α (K)=0.00989 <i>14</i> ; α (L)=0.00211 <i>3</i> ; α (M)=0.000498 <i>7</i> ; α (N)=0.0001208 <i>18</i> ; α (O)=1.99×10 ⁻⁵ <i>3</i> α (P)=1.059×10 ⁻⁶ <i>15</i>
5348.0	(18,19)	311.3 <i>5</i> 596.8 <i>5</i>	20 6 100 <i>30</i>	5037.2 4750.7	(17,18) (16,17)			
5387.4	(19 ⁻ ,20 ⁻)	617.2 2	100	4770.2	(17 ⁻ ,18 ⁻)	E2 [#]	0.01383	α (K)=0.01076 <i>15</i> ; α (L)=0.00235 <i>4</i> ; α (M)=0.000557 <i>8</i> ; α (N)=0.0001350 <i>19</i> ; α (O)=2.22×10 ⁻⁵ <i>4</i> α (P)=1 152×10 ⁻⁶ <i>1</i> 7
5550.9	22+	729.5 4	100	4821.4	20+	E2 [#]	0.00954	$\alpha(K) = 0.00758 \ II; \ \alpha(L) = 0.001504 \ 22; \ \alpha(M) = 0.000353 \ 5; \ \alpha(N) = 8.58 \times 10^{-5} \ I2 \ \alpha(O) = 1.425 \times 10^{-5} \ 20; \ \alpha(P) = 8.14 \times 10^{-7} \ I2$
5561.6		1427.0	100	4134.6	18+			E_{γ}, I_{γ} : from ¹⁵⁰ Nd(³⁶ S, 6n γ):Delayed.
5625.7	22-	647.5 3	100	4978.2	20-	E2	0.01241	$\alpha(K)=0.00972$ 14; $\alpha(L)=0.00206$ 3; $\alpha(M)=0.000487$ 7; $\alpha(N)=0.0001181$ 17; $\alpha(O)=1.95 \times 10^{-5}$ 3 $\alpha(P)=1.042 \times 10^{-6}$ 15
5666.5	23-	621.5 2	100	5045.0	21-	E2	0.01361	$\alpha(\mathbf{K}) = 1.042 \times 10^{-175}$ $\alpha(\mathbf{K}) = 0.01061 \ 15; \ \alpha(\mathbf{L}) = 0.00230 \ 4; \ \alpha(\mathbf{M}) = 0.000546 \ 8; \ \alpha(\mathbf{N}) = 0.0001324 \ 19;$ $\alpha(\mathbf{O}) = 2.18 \times 10^{-5} \ 3$ $\alpha(\mathbf{P}) = 1.135 \times 10^{-6} \ 16$
5731.5		595.3 8	100	5136.2				
5787.7	(22 ⁻)	623.1 <i>3</i>	100	5164.6	(20 ⁻)	E2	0.01353	α (K)=0.01055 <i>15</i> ; α (L)=0.00229 <i>4</i> ; α (M)=0.000542 <i>8</i> ; α (N)=0.0001314 <i>19</i> ; α (O)=2.16×10 ⁻⁵ <i>3</i> α (D)=1.120×10 ⁻⁶ <i>16</i>
5951.5	23-	657.7 4	100	5293.8	21-	E2	0.01198	$\alpha(\mathbf{P})=1.129\times10^{-1}10^{-1}$ $\alpha(\mathbf{K})=0.00940 \ 14; \ \alpha(\mathbf{L})=0.00197 \ 3; \ \alpha(\mathbf{M})=0.000466 \ 7; \ \alpha(\mathbf{N})=0.0001132 \ 16; \ \alpha(\mathbf{O})=1.87\times10^{-5} \ 3$ $\alpha(\mathbf{P})=1.008\times10^{-6} \ 15$
5981.3	24+	744.8 <i>3</i>	100	5236.5	22+	E2	0.00912	$\alpha(K) = 1.000 \times 10^{-15}$ $\alpha(K) = 0.00727 \ 11; \ \alpha(L) = 0.001427 \ 20; \ \alpha(M) = 0.000335 \ 5; \ \alpha(N) = 8.13 \times 10^{-5} \ 12$ $\alpha(O) = 1.352 \times 10^{-5} \ 19; \ \alpha(P) = 7.80 \times 10^{-7} \ 11$
6024.8		769.8 5	100	5255.0		#		
6055.5	(21 ⁻ ,22 ⁻)	668.1 <i>3</i>	100	5387.4	(19 ⁻ ,20 ⁻)	E2 [#]	0.01157	α (K)=0.00910 <i>13</i> ; α (L)=0.00189 <i>3</i> ; α (M)=0.000447 <i>7</i> ; α (N)=0.0001084 <i>16</i> ; α (O)=1.79×10 ⁻⁵ <i>3</i> α (P)=9.76×10 ⁻⁷ <i>14</i>
6298.1	(24 ⁻)	672.4 4	100	5625.7	22-			
6323.6	(24+)	772.7 5	100	5550.9	22+	(E2)	0.00843	α (K)=0.00674 <i>10</i> ; α (L)=0.001300 <i>19</i> ; α (M)=0.000305 <i>5</i> ; α (N)=7.40×10 ⁻⁵ <i>11</i> α (O)=1.233×10 ⁻⁵ <i>18</i> ; α (P)=7.24×10 ⁻⁷ <i>11</i>

$\gamma(^{180}\text{Os})$ (continued)								ontinued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult.‡	α	Comments
6373.3		641.8 <i>10</i>	100	5731.5		(E2)	0.01265	$\alpha(K)=0.00990 \ 15; \ \alpha(L)=0.00211 \ 3; \ \alpha(M)=0.000499 \ 8; \ \alpha(N)=0.0001210 \ 18; \\ \alpha(O)=1.99\times10^{-5} \ 3 \\ \alpha(P)=1.061\times10^{-6} \ 16$
6378.0	25-	711.5 4	100	5666.5	23-	E2 [#]	0.01007	$\alpha(K)=0.00798 \ 12; \ \alpha(L)=0.001605 \ 23; \ \alpha(M)=0.000377 \ 6; \ \alpha(N)=9.16\times10^{-5} \ 13 \ \alpha(O)=1.519\times10^{-5} \ 22; \ \alpha(P)=8.56\times10^{-7} \ 12$
6496.3 6653 0	(24^{-}) (25^{-})	708.6 <i>3</i> 701 5 6	100 100	5787.7 5951 5	(22 ⁻) 23 ⁻			
6766.5	26 ⁺	785.2 3	100	5981.3	23 ⁺	E2 #	0.00815	α (K)=0.00653 <i>10</i> ; α (L)=0.001249 <i>18</i> ; α (M)=0.000292 <i>5</i> ; α (N)=7.10×10 ⁻⁵ <i>10</i> α (O)=1.185×10 ⁻⁵ <i>17</i> ; α (P)=7.01×10 ⁻⁷ <i>10</i>
6772.5 6823.9	(23 ⁻ ,24 ⁻)	717.0 799.1 5	100 100	6055.5 6024.8	(21 ⁻ ,22 ⁻)			
7030.8	(26 ⁻)	732.7 4	100	6298.1	(24 ⁻)	(E2)	0.00945	α (K)=0.00751 <i>11</i> ; α (L)=0.001488 <i>21</i> ; α (M)=0.000349 <i>5</i> ; α (N)=8.48×10 ⁻⁵ <i>12</i> α (O)=1.409×10 ⁻⁵ <i>20</i> ; α (P)=8.06×10 ⁻⁷ <i>12</i>
7144.9 7179.7	(26 ⁺) (27 ⁻)	821.3 801.7 <i>5</i>	100 100	6323.6 6378.0	(24 ⁺) 25 ⁻			
7290.4 7431_1	(26^{-}) (27^{-})	794.1 5 778 1 5	100 100	6496.3 6653.0	(24^{-}) (25^{-})			
7535.4	$(25^{-}, 26^{-})$	762.9 5	100	6772.5	$(23^{-},24^{-})$			
7614.7 7664.8	(281)	848.2 5 840.9 5	100	6766.5	261			
7842.5	(28 ⁻)	811.7 5	100	7030.8	(26 ⁻)			
8014.6	(28^{+})	869.7 <i>5</i>	100	7144.9	(26^{+})			
8063.6	(29 ⁻)	883.9 5	100	7179.7	(27 ⁻)			
8303.2	(29)	872.1 5	100	7431.1	(27)			
8348.5	(27,28)	813.1 5	100	/535.4	(25, 26)			
8554.0	(30°)	939.3 5	100	/014./	(28°)			
8373.0	(20^{-})	908.2 5	100	7004.8	(28^{-})			
8018 3	(30^+)	097.55	100	7042.5 8014.6	(28^+)			
0021.0	(30^{-})	903.75	100	8063.6	(20^{-})			
9220.3	$(20^{-} 30^{-})$	871.8.5	100	8348 5	$(27^{-}28^{-})$			
92767	$(2)^{-},50^{-})$	973 5 5	100	8303.2	$(27^{-}, 20^{-})$			
9595.4	(32^+)	1041 4 5	100	8554.0	(30^+)			
9717 3	(32^{-})	977 5 5	100	8739.8	(30^{-})			
9845.6	(32^+)	927.3.5	100	8918 3	(30^+)			
10049.7	(33^{-})	1027.8.5	100	9021.9	(31^{-})			
10152.1	$(31^{-}, 32^{-})$	931.8.5	100	9220.3	$(29^{-}, 30^{-})$			
10737.1?	(34^+)	1141.7 [°] 5	100	9595.4	(32^+)			
11146.9?	(33 ⁻ .34 ⁻)	994.8 [°] .5	100	10152.1	$(31^-, 32^-)$			

From ENSDF

γ (¹⁸⁰Os) (continued)

- [†] From weighted average of ¹⁸⁰Ir ε decay, ¹⁵⁰Nd(³⁶S,6n γ),¹⁵⁰Nd(³⁴S,4n γ), and ¹⁶⁶Er(¹⁸O,4n γ),¹⁶⁸Er(¹⁶O,4n γ), except where noted. [‡] From $\gamma(\theta)$ and conversion electron data in ¹⁶⁶Er(¹⁸O,4n γ),¹⁶⁸Er(¹⁶O,4n γ), except as noted. Stretched Q transitions from $\gamma(\theta)$ are assumed to be E2 in character. # From R(DCO) in ¹⁵⁰Nd(³⁶S,6n γ),¹⁵⁰Nd(³⁴S,4n γ). Stretched Q transitions are assumed to be E2 in character. @ From conversion electron data in ¹⁸⁰Ir ε decay. & From ¹⁸⁰Ir ε decay.

- ^{*a*} From sum of $\alpha(K)$ exp, $\alpha(L)$ exp, and $\alpha(M)$ exp from ¹⁸⁰Ir ε decay.
- ^b Multiply placed.
- ^c Placement of transition in the level scheme is uncertain.

 $^{180}_{76}\mathrm{Os}_{104}$

0.0 21.5 min 4

 $^{180}_{76}\mathrm{Os}_{104}$

	Legend
Level Scheme (continued) Intensities: Type not specified	$\begin{array}{c c} & I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ & I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ & I_{\gamma} > 10\% \times I_{\gamma}^{max} \end{array}$

 $^{180}_{76}\mathrm{Os}_{104}$

 $^{180}_{76}\mathrm{Os}_{104}$

¹⁸⁰₇₆Os₁₀₄

 $^{180}_{76}\mathrm{Os}_{104}\text{--}28$

From ENSDF

 $^{180}_{76}\mathrm{Os}_{104}\text{--}28$

29

From ENSDF

 $^{180}_{76}\mathrm{Os}_{104}\text{--}29$

¹⁸⁰₇₆Os₁₀₄

386

276

132

408.63

132.11

0.0

4

2+

0+

Adopted Levels, Gammas

¹⁸⁰₇₆Os₁₀₄

¹⁸⁰₇₆Os₁₀₄

6+

 $\mathbf{4}^+$

2+ 0+