		Type		Author	History Citation	Literature Cutoff Date		
	Full Evaluation		E. A. Mccutchan	NDS 126, 151 (2015)	1-Feb-2015			
$Q(\beta^{-}) = -3542\ 24$ $S(2n) = 17868\ 29$; α : Additional inf	t; S(n)=79 S(2p)=6 Formation	970 24; S(p)=2 900 40 (2012) 1.	2247 27 Wa38).	; Q(<i>a</i>)=4660 <i>40</i>	2012Wa38			
					¹⁸⁰ Ir Levels			
				Cross Re	ference (XREF) Flags			
				A 180] B 184 C 154	Pt ε decay (56 s) Au α decay (47.6 s) Sm(³¹ P,5n γ)			
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF		(Comments		
0.0#	(5 ⁺)	1.5 min <i>1</i>	BC	${\%\varepsilon + \%\beta^+ = 100}$ J ^{π} : direct feedin T _{1/2} : weighted a 1971Na27, 19	g to 4^+ , 5, and 6^+ states average of 1.5 min <i>1</i> (197) 192Bo19.	in ¹⁸⁰ Os. ² 2Ak03) and 1.5 min 2 (1973LaZC). Others:		
				E(level): doubly state by evalu	-decoupled band observed	1 in 154 Sm(31 P,5n γ) assigned to the ground		
80.4 5			В	configuration= $\pi 1/2[541]\nu 1/2[521]$; doubly-decoupled band. E γ =80.4 observed in ¹⁸⁴ Au α -decay. E γ =80.6 from ¹⁸⁰ Pt ε -decay is probably the same transition.				
98.22 [@] 19	(6 ⁺)		С					
113.5			В	$E\gamma = 113.5$ obsersame transitio	ved in ¹⁸⁴ Au α -decay. Ey n.	z =113.0 from ¹⁸⁰ Pt ε -decay is probably the		
164.00 [#] 10	(7+)		C					
107 $180.80^{\&}$ 17 212.4.5	(7 ⁺)		Б С В	J^{π} : (E2) 274 γ fr	rom (9 ⁺).			
$296.94^{\textcircled{0}}20$	(8 ⁺)		c	J ^π : D+Q 115γ t	o (7 ⁺).			
441.83 ^{&} 19	(9+)		С	J^{π} : (E2) 278γ to	o (7 ⁺).			
454.50 [#] 14	(9 ⁺)		С					
623.92 [@] 22	(10^{+})		С					
825.3 ^{&} 21	(11 ⁺)		С					
847.80 [#] 18	(11^+)		C					
$1057.20^{\circ} 23$	(12^+)		C					
$1302.57 \approx 23$	(13^+)		C					
1520.0 4 $1571.18^{@} 24$	(13) (14^+)		C					
1371.18 24 1846 39 $\& 24$	(14^{-}) (15^{+})		c					
1876.8 [#] 5	(15^+)		c					
2120.16 [@] 25	(16 ⁺)		С					
2179.2 4	(16^{+})		С					
2385.4 ^{&} 3	(17^{+})		С					
2406.8 [#] 7	(17^+)		C					
2493.8 / 2622.2 [@] 1	(1/')		C					
2022.2 - 4	(10)		C					

¹⁸⁰Ir Levels (continued)

E(level) [†]	J ^{π‡}	XREF	Comments
2882.7 ^{&} 4	(19^{+})	С	
2902.3 [#] 9	(19^+)	C	
$3162.2^{@}4$	(20^{+})	C	
3452.7 ^{&} 6	(20^{+})	c	
3752.5 [@] 5	(22^+)	C	
4394.0 [@] 7	(24^{+})	C	
5089.3 [@] 9	(26^+)	c	
0+y ^a	J	C	J^{π} : based on a comparison of similar band in ¹⁷⁸ Re, 2002Zh01 suggest J^{π} =(8 ⁻) for the bandhead
91 19+ v^{b} 22	I+1	C	bulleneue.
$146.48 + y^a 22$	J+2	c	
345.63+y ^b 24	J+3	С	
431.53+y ^a 24	J+4	С	
733.2+y ^b 3	J+5	С	
852.1+y ^a 3	J+6	С	
$1224.4 + y^{D} 4$	J+7	С	
$1389.7 + y^{a} 3$	J+8	C	
$1797.9 + y^{0} 4$	J+9	C	
$2021.3 + y^{21}.3$	J+10	C	
$2441.9 + y^2 4$ 2721 5+ $y^a 3$	J+11 I I+12	C	
$3139.6+y^{b}.4$	J+12 I+13	c	
$3458.3 + y^a 5$	J+15 J+14	c	
3859.6+y ^b 7	J+15	С	
0+z	(7^{+})	С	J^{π} : (E1) 78.5 γ from (8 ⁻).
$78.49 + z^{C} 10$	(8-)	С	J^{π} : (M1) 95.3 γ from (9 ⁻).
173.7+z ^{<i>a</i>} 4	(9 ⁻)	С	J^{π} : from comparison of the (9 ⁻) to (7 ⁻) transition energies in similar bands in neighboring Ir and Re nuclei.
304.7+z ^c 4	(10 ⁻)	С	
$461.1 + z^d 5$	(11^{-})	С	
$648.4 + z^{c} 5$	(12^{-})	С	
$858.7 + z^d 5$	(13 ⁻)	С	
$1089.2 + z^{c} 5$	(14 ⁻)	C	
$1336.7 + z^a 5$	(15^{-})	C	
1599.1+z ^e 5	(16)	C	
$18/6.0+z^{a}$ 5	$(1'/^{-})$	C	
2103.9+2 3	(10)	C	
$24/0.1+2^{-5}$ 2787 $3+7^{-5}$	(19) (20^{-})	C	
$31194 + z^{d}6$	(20^{-})	c	
$3466.2 + z^{c} 6$	(21^{-})	c	
3823.9+z ^d 6	(23 ⁻)	С	
4196.2+z ^c 8	(24-)	С	
4575.2+z ^d 8	(25 ⁻)	С	
0+u ^e	J1	С	
147.1+u ^f 3	J1+1	С	
$315.4 + u^{e}_{f} 3$	J1+2	С	
$501.5 + u^{f} 4$	J1+3	С	

¹⁸⁰Ir Levels (continued)

E(level) [†]	Jπ‡	XREF	E(level) [†]	$J^{\pi \ddagger}$	XREF	E(level) [†]	Jπ‡	XREF
701.6+u ^e 4	J1+4	С	1634.2+u ^e 4	J1+8	С	2765.5+u ^e 6	J1+12	С
915.3+u ^f 4	J1+5	С	1900.8+u ^f 4	J1+9	С	3087.5+u ^f 6	J1+13	С
1141.9+u ^e 4	J1+6	С	2179.0+u ^e 5	J1+10	С	3399.5+u ^e 6	J1+14	С
1381.8+u ^f 4	J1+7	С	2465.2+u ^f 5	J1+11	С	3740.8+u ^f 8	J1+15	С

 † From a least-squares fit to Ey's by evaluator.

^{\ddagger} From ¹⁵⁴Sm(³¹P,5n γ) based on DCO ratios, intraband B(M1)/B(E2) ratios, systematics of band properties in neighboring nuclei and proposed configurations. Further support for band head assignments is given in the comments.

[#] Band(A): Doubly-decoupled band, $\pi 1/2[541]\nu 1/2[521]$, $\alpha = 1$.

^(a) Band(B): $\pi 1/2[541]\nu 5/2[512]$, $\alpha = 0$. $\pi 1/2[541]\nu 7/2[514]$ is also possible but less likely. Band crossing is observed at $\hbar \omega = 0.26$ MeV.

[&] Band(b): $\pi 1/2[541]\nu 5/2[512]$, $\alpha = 1$. $\pi 1/2[541]\nu 7/2[514]$ is also possible.

^{*a*} Band(C): $\pi 1/2[541]\nu(i_{13/2})$, $\alpha=0$. Band crossing is observed at $\hbar\omega \approx 0.35$ MeV.

^b Band(c): $\pi 1/2[514]\nu(i_{13/2}), \alpha = 1.$

^c Band(D): $\pi 9/2[514]\nu(i_{13/2})$, $\alpha=0$. Main component from $i_{13/2}$ orbital is 7/2[633].

^d Band(d): $\pi 9/2[514]v(i_{13/2})$, $\alpha = 1$. Main component from $i_{13/2}$ orbital is 7/2[633].

^{*e*} Band(E): $\pi(5/2[402] \text{ or } 9/2[514])\nu 9/2[624].$

^{*f*} Band(e): $\pi(5/2[402] \text{ or } 9/2[514])\nu 9/2[624].$

 $\gamma(^{180}\text{Ir})$

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α
80.4		80.4 [#] 5		0.0	(5^{+})		
113.5		113.5 [#] 5		0.0	(5 ⁺)		
164.00	(7^{+})	164.0 <i>1</i>	100	0.0	(5^{+})	E2 [@]	0.690
180.80	(7^+)	82.5 <i>1</i>	100	98.22	(6^{+})		
212.4		212.4 [#] 5		0.0	(5^{+})		
296.94	(8^{+})	115.8 <i>3</i>	86 27	180.80	(7^+)	(M1+E2)	
		198.8 <i>1</i>	100	98.22	(6^{+})		
441.83	(9^+)	145.0 <i>3</i>	71 21	296.94	(8^+)	(M1+E2)	
		261.0 <i>I</i>	100	180.80	(7^{+})	(E2)	0.1450
		277.8 5		164.00	(7^{+})	(E2)	0.1196 18
454.50	(9 ⁺)	273.7 1	69	180.80	(7^{+})	(E2)	0.1251
		290.5 1	100	164.00	(7^{+})	(E2)	0.1044
623.92	(10^{+})	182.0 5	17 5	441.83	(9 ⁺)	(M1+E2)	
		327.0 1	100	296.94	(8^{+})	(E2)	0.0737
825.3	(11^{+})	201.5 5	16 5	623.92	(10^{+})	(M1+E2)	
		383.5 <i>1</i>	100	441.83	(9 ⁺)	(E2)	0.0471
847.80	(11^{+})	393.3 <i>1</i>	100	454.50	(9+)	(E2)	0.0440
1057.20	(12^{+})	231.8 5	12 4	825.3	(11^{+})	(M1+E2)	
		433.3 <i>1</i>	100	623.92	(10^{+})	(E2)	0.0341
1302.57	(13^{+})	245.3 5	11 3	1057.20	(12^{+})		
		477.2 1	100	825.3	(11^{+})	(E2)	0.0267
1328.8	(13^{+})	481.0 <i>3</i>	100	847.80	(11^{+})	(E2)	0.0261
1571.18	(14^{+})	268.5 5	14 6	1302.57	(13^{+})		
		514.0 <i>1</i>	100	1057.20	(12^{+})	(E2)	0.0222
1846.39	(15^{+})	275.3 5	10 3	1571.18	(14^{+})		
		543.8 <i>1</i>	100	1302.57	(13^{+})	(E2)	0.0194

					$\gamma(^{180}$	⁾ Ir) (continue	ed)
E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	\mathbf{J}_f^{π}	Mult. [‡]	α
1876 8	(15^{+})	548.0.3	100	1328.8	(13^+)	(F2)	0.0190
2120.16	(15^{+})	273.5.5	10.3	1846.39	(15^+)	(12)	0.0170
2120110	(10)	549.0 1	100	1571.18	(14^+)	(E2)	0.0190
2179.2	(16^{+})	608.0 <i>3</i>	100	1571.18	(14 ⁺)	(E2)	0.01495
2385.4	(17^{+})	265.5 5	≤20	2120.16	(16^{+})		
		539.0 <i>1</i>	100	1846.39	(15^{+})	(E2)	0.0198
2406.8	(17^{+})	530.0 5	100	1876.8	(15^{+})	(E2)	0.0206
2495.8	(17^{+})	619.0 5	100	1876.8	(15^{+})		
2622.2	(18^{+})	236.5 5	≤29	2385.4	(17^{+})		
		443.0 5	53	2179.2	(16^{+})	(E2)	
	(10)	502.0 3	100	2120.16	(16^+)	(E2)	0.0235
2882.7	(19+)	260.5 5	<u>≤</u> 48	2622.2	(18^+)		0.0040
2002.2	$(10\pm)$	497.5 3	100	2385.4	(17^+)	(E2)	0.0240
2902.3	(19^{+})	495.5 5	100	2406.8	$(1/^{+})$	(E2)	0.0243
3162.2	(20°)	280.0 5	≤42 100	2882.7	(19^{+})	(E2)	0.0107
24527	(21^{+})	57005	100	2022.2	(10^+)	(E2) (E2)	0.0197
3432.7	(21) (22^+)	500.3.3	100	2002.7	(19^{-})	(E2)	0.01733
1394 0	(22) (24^+)	641 5 5	100	3752.5	(20^{-})	(E2)	0.01324
5089 3	(2+) (26+)	69535	100	4394.0	(22^{+})	(L2)	0.01324
91 19+v	(20)) I+1	91 2 3	100	0+v	(21) I	(M1 + E2)	
146.48 + v	J+2	55.3 1	100	91.19+v	J+1	(1111122)	
<u> </u>		146.5 3	40 10	0+v	J		
345.63+y	J+3	199.1 <i>1</i>	100	146.48+y	J+2	(M1+E2)	
5		254.4 3	38 10	91.19+y	J+1		
431.53+y	J+4	85.5 <i>3</i>	17 5	345.63+y	J+3		
		285.1 <i>1</i>	100	146.48+y	J+2	(E2)	0.1105
733.2+y	J+5	301.8 <i>3</i>	100	431.53+y	J+4	(M1+E2)	
		387.5 3	89 20	345.63+y	J+3		
852.1+y	J+6	118.8 5	5.6 15	733.2+y	J+5		0.00/0
1004.4	1.7	420.6 1	100	431.53+y	J+4	(E2)	0.0368
1224.4+y	J+7	372.3 3	94 13	852.1+y	J+6	(M1+E2)	
1290 7	T I O	491.2.3	100	/33.2+y	J+5 L+6	(E2)	0.0100
$1309.7 \pm y$ 1707.0 ± y	$J \pm 0$	JS7.0 I 408 1 3	65 13	$0.32.1 \pm y$ 1380 7 $\pm y$	J+0 I+8	(E2) (M1+E2)	0.0199
1797.9+y	JTJ	573 5 3	100	1339.7 + y 1224.4 + y	J+0 I+7	(1011+122)	
2021 5+v	I+10	631.8.7	100	1389.7 + y	I+8	(E2)	0.01370
2441.9+v	J+11	420.5 5	100	2021.5 + y	J+10	(22)	0.01270
,		644.0 1		1797.9+v	J+9		
2721.5+y	J+12	700.0 1		2021.5+y	J+10	(E2)	0.01092
3139.6+y	J+13	418.0 5	≤7	2721.5+y	J+12		
-		697.8 <i>3</i>	100	2441.9+y	J+11		
3458.3+y	J+14	736.8 <i>3</i>	100	2721.5+y	J+12		
3859.6+y	J+15	720.0 5	100	3139.6+y	J+13		
78.49+z	(8-)	78.5 1	100	0+z	(7^{+})	(E1) [@]	0.727
173.7+z	(9^{-})	95.3 <i>3</i>	100	78.49+z	(8^{-})	$(M1)^{@}$	7.03 12
304.7+z	(10^{-})	131.0 3	100	173.7+z	(9 ⁻)	(M1+E2)	
461.1+z	(11-)	156.4 <i>1</i>	100	304.7+z	(10^{-})	(M1+E2)	
		287.5 5	19 <i>3</i>	173.7+z	(9 ⁻)	(E2)	
648.4+z	(12^{-})	187.3 <i>1</i>	100	461.1+z	(11^{-})	(M1+E2)	
		343.8 <i>3</i>	50 8	304.7+z	(10 ⁻)	(E2)	0.0638
858.7+z	(13 ⁻)	210.3 <i>1</i>	100	648.4+z	(12^{-})	(M1+E2)	
		397.8 <i>3</i>	86 12	461.1+z	(11 ⁻)	(E2)	0.0427
1089.2+z	(14^{-})	230.3 3	70 11	858.7+z	(13^{-})	(M1+E2)	0.0001
12267	$(1 E^{-})$	440.8 1	100	648.4+z	(12^{-})	(E2) (M1 - E2)	0.0326
1330./+Z	(15)	241.5 3	48 /	1089.2+z	(14)	(M1+E2)	

Continued on next page (footnotes at end of table)

					,		nucu)
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α
1336.7+z	(15^{-})	477.9 1	100	858.7+z	(13^{-})	(E2)	
1599.1+z	(16^{-})	262.3.5	35.5	1336.7+z	(15^{-})	(M1+E2)	
10771112	(10)	510.0 /	100	1089.2+z	(12^{-})	(E2)	0.0226
1876.0+z	(17^{-})	277.0.5	29.5	1599.1+z	(16^{-})	(M1+E2)	010220
	()	539.3 1	100	1336.7 + z	(15^{-})	(E2)	0.0198
2165.9+z	(18^{-})	289.8 5	29 5	1876.0+z	(17^{-})	(M1+E2)	
	(-)	566.8 1	100	1599.1+z	(16^{-})	(E2)	0.01758
2470.1+z	(19^{-})	304.3 5	20 4	2165.9+z	(18^{-})	()	
	(594.1 /	100	1876.0+z	(17^{-})	(E2)	0.01576
2787.3+z	(20^{-})	317.3 5	22.6	2470.1+z	(19-)		
	. ,	621.4 <i>3</i>	100	2165.9+z	(18 ⁻)	(E2)	0.01423
3119.4+z	(21^{-})	332.0 5	19 4	2787.3+z	(20^{-})		
		649.3 <i>3</i>	100	2470.1+z	(19 ⁻)		
3466.2+z	(22^{-})	346.8 5	50 25	3119.4+z	(21^{-})		
		678.8 5	100	2787.3+z	(20^{-})		
3823.9+z	(23^{-})	704.5 3	100	3119.4+z	(21^{-})		
4196.2+z	(24^{-})	730.0 5	100	3466.2+z	(22^{-})		
4575.2+z	(25-)	751.3 5	100	3823.9+z	(23-)		
147.1+u	J1+1	147.1 <i>3</i>	100	0+u	J1	(M1+E2)	
315.4+u	J1+2	168.3 <i>1</i>	100	147.1+u	J1+1	(M1+E2)	
		315.5 5	37 11	0+u	J1	. ,	
501.5+u	J1+3	186.0 <i>3</i>	100	315.4+u	J1+2	(M1+E2)	
		354.8 <i>3</i>	69 20	147.1+u	J1+1	(E2)	0.0584
701.6+u	J1+4	200.3 <i>3</i>	96 29	501.5+u	J1+3	(M1+E2)	
		386.0 <i>3</i>	100	315.4+u	J1+2	(E2)	0.0463
915.3+u	J1+5	213.5 <i>3</i>	55 7	701.6+u	J1+4	(M1+E2)	
		413.8 <i>3</i>	100	501.5+u	J1+3	(E2)	0.0384
1141.9+u	J1+6	226.5 5	41 12	915.3+u	J1+5	(M1+E2)	
		440.3 <i>1</i>	100	701.6+u	J1+4	(E2)	0.0327
1381.8+u	J1+7	240.0 5	30 9	1141.9+u	J1+6	(M1+E2)	
		466.5 1	100	915.3+u	J1+5	(E2)	0.0282
1634.2+u	J1+8	252.3 5	26 8	1381.8+u	J1+7		
		492.3 <i>1</i>	100	1141.9+u	J1+6	(E2)	0.0247
1900.8+u	J1+9	266.5 5	30 9	1634.2+u	J1+8		
		519.0 <i>1</i>	100	1381.8+u	J1+7	(E2)	0.0217
2179.0+u	J1+10	278.2 5	25 9	1900.8+u	J1+9		
		544.8 <i>3</i>	100	1634.2+u	J1+8	(E2)	0.0193
2465.2+u	J1+11	564.4 <i>3</i>	100	1900.8+u	J1+9	(E2)	0.01776
2765.5+u	J1+12	586.5 <i>3</i>	100	2179.0+u	J1+10	(E2)	0.01624
3087.5+u	J1+13	622.3 <i>3</i>	100	2465.2+u	J1+11		
3399.5+u	J1+14	634.0 <i>3</i>	100	2765.5+u	J1+12		
3740.8+u	J1+15	653.3 5	100	3087.5+u	J1+13		

 $v(^{180}\text{Ir})$ (continued)

[†] From ¹⁵⁴Sm(³¹P,5n γ), except where noted. [‡] From DCO ratios in ¹⁵⁴Sm(³¹P,5n γ), except where noted. As these transitions are placed within rotational band structures, Q transitions are assumed E2 and D+Q transitions assumed M1+E2. # From ¹⁸⁴Au α decay (47.6 s). @ From $\alpha(\exp)$ in ¹⁵⁴Sm(³¹P,Sn γ).

	Legend
Level Scheme Intensities: Type not specified	$\begin{array}{c c} & & I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ & & I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ & & I_{\gamma} > 10\% \times I_{\gamma}^{max} \end{array}$

0.0 1.5 min 1

 $^{180}_{77}\mathrm{Ir}_{103}$

¹⁸⁰₇₇Ir₁₀₃

1.5 min 1

 $^{180}_{77}\mathrm{Ir}_{103}$

8

 $^{180}_{77}\mathrm{Ir}_{103}$

 $^{180}_{77}$ Ir $_{103}$

