¹⁸⁰Tl ε decay (1.09 s) 2011El07

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	E. A. Mccutchan	NDS 126, 151 (2015)	1-Feb-2015

Parent: ¹⁸⁰Tl: E=0.0; $J^{\pi}=(5^{-})$; $T_{1/2}=1.09$ s *1*; $Q(\varepsilon)=10990$ 60; $\%\varepsilon+\%\beta^{+}$ decay=94 4

2011E107: ¹⁸⁰Tl activity produced from spallation of UC_x with E(p)=1.4 GeV and separated with resonant laser ionization technique and the High Resolution Separator. Measured $E\gamma$, $I\gamma$, $\gamma\gamma$, E(ce), I(ce) using a Miniball cluster detector (consisting of three HPGe crystals) and two Si detectors.

Other: 2013E108, deduced asymmetric fission of excited levels populated in ¹⁸⁰Tl decay.

The decay scheme is most likely incomplete, as the highest observed level is at only \approx 2.5 MeV compared with the large Q value for the decay (10.99 MeV). A total energy release of 9.6 MeV 3 is calculated for this decay scheme using the RADLST code, compared with the effective Q value of 10.3 keV 4.

 α : Additional information 1.

¹⁸⁰Hg Levels

E(level) [†]	J ^{π‡}	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
0.0	0^{+}	1031.82 24	6+	1468.62 18	$(3^-, 4^+)$	2021.90 20	
419.7 <i>4</i>	0^{+}	1091.4 4	$(2^+,1)$	1504.1 <i>3</i>	(6^{+})	2348.56 19	$(4,5^{-})$
434.13 15	2^{+}	1203.87 23		1663.0 5		2487.5 <i>3</i>	
601.47 15	2^{+}	1223.60 19	$(3^{-},4^{+})$	1797.26 19	$5^{(-)}$		
706.01 18	4+	1399.20 19	(3-)	1840.2 5			

[†] From a least-squares fit to $E\gamma$ by evaluator.

[‡] From the Adopted Levels.

E(decay)	E(level)	$\mathrm{I}\beta^+$ ‡	$\mathrm{I}\varepsilon^{\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments
$(8.50 \times 10^3 6)$	2487.5	1.3 3	0.27 5	6.0	1.6 3	av E β =3427 29; ε K=0.135 3; ε L=0.0233 5; ε M+=0.00747 15
$(8.64 \times 10^3 \ 6)$	2348.56	16.5 13	3.12 25	4.9	19.6 <i>15</i>	av E β =3493 29; ε K=0.1297 25; ε L=0.0223 5; ε M+=0.00715 14
$(8.97 \times 10^3 6)$	2021.90	6.5 9	1.1 <i>I</i>	5.4	7.6 10	av Eβ=3648 29; εK=0.1174 22; εL=0.0202 4; εM+=0.00647 12
$(9.15 \times 10^3 \ 6)$	1840.2	0.69 8	0.11 1	6.4	0.80 9	av Eβ=3734 29; εK=0.1112 20; εL=0.0191 4; εM+=0.00613 11
$(9.19 \times 10^3 6)$	1797.26	5.2 11	0.81 18	5.5	6.0 13	av Eβ=3755 29; εK=0.1098 20; εL=0.0189 4; εM+=0.00605 11
$(9.33 \times 10^3 \ 6)$	1663.0	0.50 13	0.075 19	6.6	0.58 15	av Eβ=3818 29; εK=0.1056 19; εL=0.0182 4; εM+=0.00582 11
$(9.49 \times 10^3 6)$	1504.1	4.0 12	0.57 17	5.7	4.6 14	av Eβ=3894 29; εK=0.1008 18; εL=0.0173 3; εM+=0.00555 10
$(9.77 \times 10^3 \ 6)$	1223.60	7.6 14	0.98 18	5.5	8.6 16	av Eβ=4028 29; εK=0.0931 16; εL=0.0160 3; εM+=0.00512 9
$(9.79 \times 10^3 6)$	1203.87	4.1 4	0.52 5	5.8	4.6 4	av Eβ=4037 29; εK=0.0925 16; εL=0.0159 3; εM+=0.00509 9
$(9.96 \times 10^3 \ 6)$	1031.82	8.7 10	1.1 <i>1</i>	5.5	9.8 11	av Eβ=4120 29; εK=0.0882 15; εL=0.0152 3; εM+=0.00485 9
$(1.028 \times 10^4 \ 6)$	706.01	21 4	2.3 4	5.2	23 4	av Eβ=4276 29; εK=0.0806 14; εL=0.01386 23; εM+=0.00444 8

 ε, β^+ radiations

[†] From an intensity balance at each level. Feedings are considered to be upper limits given the large Q value of the decay (10.99

Continued on next page (footnotes at end of table)

$^{180}\mathrm{Tl}~\varepsilon$ decay (1.09 s) 2011El07 (continued)

ε, β^+ radiations (continued)

MeV) and the highest observed level at only \approx 2.5 MeV. [‡] Absolute intensity per 100 decays.

$\gamma(^{180}\text{Hg})$

I γ normalization, I(γ +ce) normalization: From Σ I(γ +c.e.)(to g.s.)=94 4. Direct feeding of the ground state is not expected (Δ J=5).

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger@}$	E_i (level)	\mathbf{J}_i^{π}	$E_f \qquad J_f^{\pi}$	Mult. [#]	α	$I_{(\gamma+ce)}^{@}$	Comments
104.7 5	1.4 4	706.01	4+	601.47 2+	[E2]	4.57 12		$\alpha(K)=0.597 \ 9; \ \alpha(L)=2.97 \ 8; \ \alpha(M)=0.778 \ 21; \ \alpha(N)=0.193 \ 6; \ \alpha(O)=0.0320 \ 9 \ \alpha(P)=0.0001041 \ 20 \ I_{\gamma}: calculated from I_{\gamma}(272\gamma), the relative branching ratio of the 272\gamma (89\%) and 105\gamma (11\%) determined from \gamma\gamma coincidences, and \alpha(E_2)=4.575 for the 105\gamma$
167.0 2	3.3 2	601.47	2+	434.13 2+	E0(+M1+E2)	3.5 4	15 1	ce(K)/(γ +ce)=0.39 17; ce(L)/(γ +ce)=0.13 4; ce(M)/(γ +ce)=0.033 11; ce(M)/(γ +ce)=0.008 3; ce(N)/(γ +ce)=0.0015 5 ce(P)/(γ +ce)=5.E-5 5 α (K)=0.9 7; α (L)=0.31 6; α (M)=0.076 18; α (N)=0.019 5; α (O)=0.0034 6; α (P)=0.00012 9 α : deduced from I(γ +ce). I(γ +ce): from $\gamma\gamma$ coincidence spectrum gated on 622 γ which populates the 602
181.8 5	0.16 <i>l</i>	601.47	2+	419.7 0+	[E2]	0.545 10		level. $\alpha(K)=0.213 \ 4; \ \alpha(L)=0.249 \ 5;$ $\alpha(M)=0.0646 \ 12;$ $\alpha(N)=0.0160 \ 3;$ $\alpha(O)=0.00270 \ 5$ $\alpha(P)=2.66\times10^{-5} \ 5$ I_{γ} : determined from γ spectrum gated on K
272.0 2	54 3	706.01	4+	434.13 2+	E2	0.1433		$\alpha(K) = 0.0800 \ 12; \ \alpha(L) = 0.0476$ 7; \(\alpha(M) = 0.01213 \ 18; \(\alpha(N) = 0.00302 \ 5; \(\alpha(O) = 0.000518 \ 8) \(\alpha(P) = 1.021 \times 10^{-5} \ 15)
325.8 2 326.8 2	15.3 <i>10</i> 5.6 9	1031.82 2348.56	6 ⁺ (4,5 ⁻)	706.01 4 ⁺ 2021.90	E2	0.0836		$\alpha(K) = 0.0217 \ 8; \ \alpha(L) = 0.0240$ 4; \alpha(M) = 0.00607 \ 9; \alpha(N) = 0.001511 \ 22; \alpha(O) = 0.000262 \ 4 \alpha(P) = 6.71 \times 10^{-6} \ 10
328.6 2 398.2 2	2.7 <i>17</i> 2.9 2	1797.26 1797.26	$5^{(-)}$ $5^{(-)}$	1468.62 $(3^-,4^+)$ 1399.20 (3^-)	E2	0.0480		$\alpha(K)=0.0324$ 5; $\alpha(L)=0.01182$
								17; α (M)=0.00295 5;

Continued on next page (footnotes at end of table)

From ENSDF

 $^{180}_{80}\mathrm{Hg}_{100}\text{--}3$

				¹⁸⁰ Tl ε decay (1.09 s) 2011El07 (continued)					
$\gamma(^{180}\text{Hg})$ (continued)									
E_{γ}^{\dagger}	Ι _γ ‡@	E_i (level)	\mathbf{J}_i^π	E_f	${ m J}_f^\pi$	Mult. [#]	α	$I_{(\gamma+ce)}^{@}$	Comments
421 20		419.7	0+	0.0	0+	E0		1.04 5	$\alpha(N)=0.000735 \ 11;$ $\alpha(O)=0.0001290 \ 19$ $\alpha(P)=4.25\times10^{-6} \ 6$ $ce(K)/ce(tot)=0.85 \ 18.$ $I_{(\gamma+ce)}: \text{ from } \Sigma I(\gamma+c.e.) \text{ feeding }$ the 420 level. Direct feeding of $J^{\pi}=0^+$ is not expected. $E_{\gamma}: \text{ from Si spectrum gated on}$
434.0 2	100 3	434.13	2+	0.0	0+	E2	0.0383		272 γ and 671 γ . α (K)=0.0266 4; α (L)=0.00887 13; α (M)=0.00220 3; α (N)=0.000548 8; α (O)=9.68×10 ⁻⁵ 14 α (P)=3.51×10 ⁻⁶ 5
472.5 5 498.1 5 517.4 2 551.1 2 553.0 2 573.4 2	1.1 2 1.3 2 3.4 4 3.0 4 2.9 4 1.6 2	1504.1 1203.87 1223.60 2348.56 2021.90 1797.26	(6^+) $(3^-,4^+)$ $(4,5^-)$ $5^{(-)}$	1031.82 706.01 706.01 1797.26 1468.62	$ \begin{array}{c} 6^+ \\ 4^+ \\ 5^{(-)} \\ (3^-, 4^+) \\ (3^-, 4^+) \end{array} $				
601.6 2	24.3 12	601.47	2+	0.0	(3,4) 0 ⁺	E2	0.01748		$\begin{aligned} &\alpha(\mathbf{K}) = 0.01317 \ 19; \ \alpha(\mathbf{L}) = 0.00328 \\ &5; \ \alpha(\mathbf{M}) = 0.000796 \ 12; \\ &\alpha(\mathbf{N}) = 0.000199 \ 3; \\ &\alpha(\mathbf{O}) = 3.58 \times 10^{-5} \ 5 \\ &\alpha(\mathbf{P}) = 1.748 \times 10^{-6} \ 25 \end{aligned}$
602.4 <i>5</i> 622.0 <i>2</i> 657.3 <i>5</i> 671.6 <i>5</i>	1.5 2 18.5 9 1.0 2	1203.87 1223.60 1091.4	$(3^-,4^+)$ $(2^+,1)$ $(2^+,1)$	601.47 601.47 434.13	2 ⁺ 2 ⁺ 2 ⁺				L : datarmined from conversion
692.9 <i>2</i>	2.4 2	1399.20	(2 ,1)	706.01	4 ⁺	[E1]	0.00459		
765.4 5	1.5 <i>1</i>	1797.26	5(-)	1031.82	6+	[E1]	0.00379		$\alpha(P)=4.58 \times 10^{-7} 7$ $\alpha(K)=0.00316 5; \alpha(L)=0.000481$ 7; $\alpha(M)=0.0001106 16;$ $\alpha(N)=2.76 \times 10^{-5} 4;$ $\alpha(O)=5.17 \times 10^{-6} 8$ (D) = 2.90 \text{ 10}^{-7} 6
769.7 2 789.4 797.7 2	3.5 2 10.4 <i>12</i> 4.5 <i>17</i>	1203.87 1223.60 1399.20	(3 ⁻ ,4 ⁺) (3 ⁻)	434.13 434.13 601.47	2+ 2+ 2+	[E1]	0.00350		$\alpha(F)=3.80\times10^{-6}$ 6 $\alpha(K)=0.00292$ 4; $\alpha(L)=0.000444$
									7; $\alpha(M)=0.0001019 \ 15$; $\alpha(N)=2.54\times10^{-5} \ 4$; $\alpha(O)=4.77\times10^{-6} \ 7$ $\alpha(P)=3.52\times10^{-7} \ 5$
798.0 2	5.1 18	1504.1	(6 ⁺)	706.01	4+	(E2)	0.00950		$\alpha(\Gamma) = 5.52 \times 10^{-5} 32 \times 10^{-5} 32 \times 10^{-5} 32 \times 10^{-5} 13$ $\alpha(K) = 0.000370 6;$ $\alpha(N) = 9.25 \times 10^{-5} 13$ $\alpha(O) = 1.695 \times 10^{-5} 24;$ $\alpha(P) = 9.87 \times 10^{-7} 14$
798.1 2 867.1 2 880.3 2	9.2 6 1.9 2 5.0 4	2021.90 1468.62 2348.56	(3 ⁻ ,4 ⁺) (4,5 ⁻)	1223.60 601.47 1468.62	(3 ⁻ ,4 ⁺) 2 ⁺ (3 ⁻ ,4 ⁺)				

Continued on next page (footnotes at end of table)

¹⁸⁰ Tl ε decay (1.09 s) 2011El07 (continued)									
γ ⁽¹⁸⁰ Hg) (continued)									
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger @}$	E_i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult. [#]	α	Comments	
948.9 2 1034.6 2	3.5 <i>11</i> 7.5 8	2348.56 1468.62	$(4,5^{-})$ $(3^{-},4^{+})$	1399.20 434.13	(3^{-}) 2 ⁺				
1091.2 2	2.3 1	1797.26	5(-)	706.01	4+	[E1]	0.00197	$\alpha(K)=0.001650 \ 24; \ \alpha(L)=0.000246 \ 4; \\ \alpha(M)=5.63\times10^{-5} \ 8; \ \alpha(N)=1.405\times10^{-5} \ 20; \\ \alpha(O)=2.65\times10^{-6} \ 4 \\ \alpha(P)=2.00\times10^{-7} \ 3$	
1125.1 2	9.7 5	2348.56	$(4,5^{-})$	1223.60	(3 ⁻ ,4 ⁺)				
1134.2 5	1.1 1	1840.2		706.01	4+				
1228.9 5	0.8 2	1663.0		434.13	2+				
1316.5 2	3.92	2021.90		/06.01	4' (+				
1455.4 5	163	2407.5 2487.5		706.01	4^+				
1701.5 2	1.0.5	2107.5		, 00.01					

[†] Uncertainties taken as 0.2 keV for I γ >1.5% and 0.5 keV for I γ ≤1.5% from a general statement by 2011El07. [‡] Intensities relative to I γ (434 γ)=100; values do not include a correction for summing.

From the Adopted Gammas.
[@] For absolute intensity per 100 decays, multiply by 0.73 4.

4

<u>¹⁸⁰Tl ε decay (1.09 s) 2011El07</u>

Decay Scheme

