⁹Be(²⁰Mg,P17NE) 2012Mu05

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	J. H. Kelley, G. C. Sheu	ENSDF	29-July-2015

There are two experiments that utilized nucleon knockout reactions on ²⁰Mg to populate states in ¹⁸Na. The first work was carried out at 43 MeV/nucleon (2004Ze05) and focused on a reconstruction of the $p+^{17}$ Ne invariant mass spectrum. The second effort was carried out at 450 MeV/nucleon and focused on analysis of the p_1-^{17} Ne, p_2-^{17} Ne and p_1-p_2 particle correlations following population of ¹⁹Mg states and their subsequent two-proton decays, which have branches that proceed sequentially through levels in ¹⁸Na. The ground state of ¹⁸Na was observed in both experiments.

2004Ze05:

- The discovery of ¹⁸Na is credited to (2004Ze04). A beam of 43 MeV/nucleon ²⁰Mg ions was produced by fragmenting a ²⁴Mg beam on a thick ¹²C target using the ALPHA spectrometer and SISSI solenoids at GANIL. The beam was transported to the SPEG spectrometer where it impinged on a 47 mg/cm² ⁹Be foil in the target position. Light ion ejectiles were detected in the position sensitive Si/CsI Δ E-E MUST array, while heavier ions were detected in spectrometer focal plane detectors. The invariant mass spectrum was generated for each p+17Ne pair observed in the experiment. The resulting spectrum indicated two peaks that are attributed to proton decay from ¹⁸Na to ¹⁷Ne.
- The two peaks are consistent with mass excesses of 24.19 MeV *16* and 25.04 MeV *17*. The interpretation of the two peaks remains unclear since no γ -ray detectors were used in the measurement; this missing information creates an ambiguity in interpretation for the case where a level in ¹⁸Na decays to an excited state of ¹⁷Ne. Significant discussion on the determination of the ground state level and assignment of J^{π} values is given in the article.
- The prefered analysis accepts the ground state mass excess of 25.04 MeV 17 with Γ =0.48 MeV 14 and J^{π} =1⁻ (by comparison with ¹⁸N). The peak appearing in the invariant mass spectrum at 24.19 MeV 16 with Γ =0.23 MeV 10 is attributed to decay from an excited state of ¹⁸Na to and excited state of ¹⁷Ne; in this case the experiment doesn't provide sufficient information to assign an energy to the ¹⁸Na level.

2012Mu05:

- The authors measured the decay of proton unbound states in ¹⁹Mg and ¹⁸Na by fragmenting a ²⁰Mg beam in a ⁹Be target and analyzing the p_1 - p_2 , p_1 -¹⁷Ne and p_2 -¹⁷Ne particle correlations.
- A beam of ²⁰Mg ions (produced by fragmenting a 450 MeV/A ²⁴Mg beam) impinged on a 2 g/cm² ⁹Be target at the midplane of the GSI FRS. The target was surrounded by an array of four position sensitive detector telescopes that measured the breakup charged particle angular correlations (p₁-p₂, p₁-¹⁷Ne and p₂-¹⁷Ne). Two prominent peaks appear in the p-¹⁷Ne angular correlation distribution; first is a peak consistent with 2p decay of the ¹⁹Mg_{g.s.} directly to ¹⁷Ne+2p with E_{res}=0.75 MeV 5, second is a peak corresponding to ¹⁹Mg excited states decaying sequentially through proton unbound states in ¹⁸Na.
- The excited states in ¹⁹Mg appear as "arc bands" in the $\theta(p_1-{}^{17}Ne)$ vs. $\theta(p_2-{}^{17}Ne)$ angular correlation spectrum. Analysis of events along a fixed or constant radius provides details about the initial ¹⁹Mg state and the ¹⁸Na states populated in the sequential decay to ¹⁷Ne_{g.s.}+2p. Evidence for two states is visible in the spectrum. Monte Carlo simulations are used to extract "best fit" values for energies and widths of ¹⁹Mg and ¹⁸Na states.

Finally arguments based on the extracted widths and the Wigner Limits are used to constrain J^{π} values. Also see earlier analysis of data in (2008Mu13).

See (2003Gr01) for further discussion on the role of ¹⁸Na states in ¹⁹Mg 2p decay.

¹⁸Na Levels

E(level)	\mathbf{J}^{π}	Г	Comments
0	(1)-	<0.2 MeV	%p≈100. In (2012Mu05) E _{res} (p+ ¹⁷ Ne)=1.23 MeV 15 while (2004Ze05) report 1.27 MeV 17. Excitation energies are reported with respect to 1.25 MeV 11, the accepted value in (2012Wa38). Γ: <0.2 MeV (2012Mu05); also see Γ=0.48 MeV 14 (2004Ze05).
0.30×10 ³ 13	2-	0.25 MeV 25	%p≈100. from $E_{res}(p+{}^{17}Ne)=1.55$ MeV 7 (2012Mu05) and ${}^{18}Na_{g.s.}=E_{res}(p+{}^{17}Ne)=1.25$ MeV 11. Γ : 0.25 MeV +25-15 (2012Mu05).

Continued on next page (footnotes at end of table)

¹⁸₁₁Na₇

⁹Be(²⁰Mg,P17NE) 2012Mu05 (continued)

¹⁸Na Levels (continued)

E(level) J^{π}	Comments
0.83×10^3 ? 3^-	from $E_{res}(p+{}^{17}Ne)=2.084$ MeV from (2011AsZX) and ${}^{18}Na_{g.s.}=E_{res}(p+{}^{17}Ne)=1.25$ MeV 11. This state is not conclusively observed; however in (2012Mu08) including this $J^{\pi}=3^{-}$ state at $O(p+{}^{17}Ne)=2.084$ MeV permits a

quantitative reproduction of the correlation spectra.