¹H(¹⁷Ne,P) **2012As04**

Type Author Citation Literature Cutoff Date

Full Evaluation J. H. Kelley, G. C. Sheu ENSDF 29-July-2015

The level structure of ¹⁸Na was studied by ¹⁷Ne+p elastic scattering, in inverse kinematics, with the aim of adding understanding to the dynamics of 2p decay of ¹⁹Mg.

A beam of $E(^{17}Ne)=4$ MeV/nucleon ions from the SPIRAL facility at GANIL impinged on a polypropylene (C_3H_6) target assembly. The target assembly consisted of a fixed 50 μ g/cm² C_3H_6 foil followed by a rotating (1000 rpm) C_3H_6 foil which stopped the beam and carried away the beams undesired decay radiation; scattered protons are unaffected by the target functionality.

The scattered protons, whose energies are convoluted with the target thicknesses and the scattering excitation function, were detected at $5^{\circ} \le \theta_{lab} \le 20^{\circ}$ with a annular position sensitive ΔE -E telescope. The scattering excitation function, which is assumed to result from elastic scattering, is deduced with an energy resolution of 13 keV. Small backgrounds from reactions on ^{12}C and β -delayed protons from ^{17}Ne are evaluated and subtracted from the proton energy spectrum. Finally the spectrum is evaluated via R-matrix analysis. Two peaks are prominent; the later apparently corresponding to a narrow $J^{\pi}=3^{-}$ resonance with interference from two broad s-wave resonances.

The deduced level structures are compared with shell-model predictions. Interpretation suggests two narrow states that are predicted in the shell model, the 1^- ground state and a 2^- excited state, are too weakly populated to be observed.

An earlier experiment utilizing a 150 μ g/cm² C₃H₆ foil (2011As07,2011AsZX) produced similar results.

¹⁸Na Levels

E(level)	J^{π}	Γ	Comments
$0.30 \times 10^3 \ 11$	2-	5 keV 3	%p≈100.
			E(level): from $E_{res}=1552 \text{ keV } 5$ and $^{18}\text{Na}_{g.s.}$ with $S_p=1.25 \text{ MeV } 11$. Γ : for Γ_0 to $^{17}\text{Ne}_{g.s.}$; there is a limit of $\Gamma<1$ keV for decay to ^{17}Ne excited states.
$0.59 \times 10^3 12$	0-	300 keV 100	%p≈100.
			E(level): from E_{res} =1842 keV 40 and ¹⁸ Na _{g.s.} with S_p =1.25 MeV 11.
			Γ : for Γ_0 to $^{17}{\rm Ne_{g.s.}}$; there is a limit of Γ <10 keV for decay to $^{17}{\rm Ne}$ excited states.
$0.78 \times 10^3 \ 11$	1-	900 keV 100	%p≈100.
			E(level): from E_{res} =2030 keV 20 and $^{18}Na_{g.s.}$ with S_p =1.25 MeV 11.
			Γ : for Γ_0 to $^{17}{\rm Ne_{g.s.}}$; there is a limit of Γ <100 keV for decay to $^{17}{\rm Ne}$ excited states.
$0.83 \times 10^3 \ 11$	3-	42 keV 10	%p≈100.
			E(level): from E_{res} =2084 keV 5 and $^{18}Na_{g.s.}$ with S_p =1.25 MeV 11.
			Γ : for Γ_0 to $^{17}\mathrm{Ne}_{\mathrm{g.s.}}$; there is a limit of Γ <1 keV for decay to $^{17}\mathrm{Ne}$ excited states.