¹⁸C β⁻ decay **1991Pr03**

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	R. Spitzer, J. H. Kelley	ENSDF	30-Jun-2021

Parent: ¹⁸C: E=0; $J^{\pi}=0^+$; $T_{1/2}=92$ ms 2; $Q(\beta^-)=11810$ 40; $\%\beta^-$ decay=100.0

¹⁸C-T_{1/2}: From (1995Sc03).

¹⁸C-Q(β^{-}): From (2021Wa16).

Decay to neutron-bound levels:

- 1991Pr03: A beam of ¹⁸C, produced using the GANIL/LISE facility, was implanted into a plastic scintillator. Activity was collected for 300 ms followed by an equal time of decay counting. A 40% relative efficience HPGe detector was placed near the stopper, and decay events were recorded for β and β - γ coincidence events. The authors aimed to resolve the β -0n and β -1n decay branches. In the article, the decay of ¹⁸C and ¹⁸N were measured under identical experimental conditions; then the ratio of the intensity of the ¹⁸O E_{γ}=1982 keV transition, which is strongly populated in ¹⁸N decay, was analyzed to determine the sum of ¹⁸C decay branches to bound ¹⁸N states. $\beta\beta$ -0n=81 5 was deduced. This implies $\beta\beta$ -1n=19 5.
- A total of 9 γ -ray ¹⁸N transitions were identified along with others associated with ¹⁷N and ¹⁸O. The γ -ray intensities are presented in two formats: first- they are given as relative intensities normalized to the strongest line (Table 1), the E_{γ}=2614 keV transition; second- intensities are given for a 100% branching sum out of each level (Table 3).
- The authors discussed the likelihood of γ -ray summing effects as a potential source of systematic uncertainty; this is because a single HPGe detector was used and it was placed close to the decay stopper foil. Secondly, they discussed an inconsistency of their data where a higher intensity feeds the $E_x=115$ keV level than is observed exiting the level. Authors suggest this inconsistency may be attributed to the state having a long lifetime causing a significan fraction ($\approx 1/2$) to fall outside the DAQ coincidence window.
- The evaluator finds significant problems with the intensity balance for the $E_x=115$ and 572 keV level γ rays; the $E_x=115$ keV level lifetime is about a ns (2008Wi05). For the analysis, the decay intensities are set equal to the feeding intensities for these two states. Furthermore there is a discrepancy in the decay branching ratios of ¹⁸N*(1734) state given in Table 1 vs. Table 3. We take the Table 1 values, since they should require less interpretation to obtain, and since they are required to arrive at their deduced relative β^- branching ratios.
- In spite of the experimental uncertainties, (1991Pr03) is the only ¹⁸C β^- decay study that provides γ -ray spectroscopy information on ¹⁸N levels. In their analysis, the authors suggest a negligible first-forbidden branch to ¹⁸N_{g.s.}, and so they normalize their measured relative branching ratios with β^- 0n=81 5 to obtain the absolute decay intensities.
- The following table is from (1991Pr03). It gives the measured energies and relative intensities of γ -rays assigned to the β^- decay of ¹⁸C. The two entries marked with ¹⁷N involve beta delayed neutron emission.

$E_{\gamma}ss$	sssssss I _γ .	
32 1	1734.8 4	25 5.
15 2	2025.3 8	75.
44 <i>4</i>	2499.3 4	41 9.
17 5	2614.2 4	100 11.
25 5.		
24 5.		
11 5.		
	$E_{\gamma}ss \\ 32 \ l \\ 15 \ 2 \\ 44 \ 4 \\ 17 \ 5 \\ 25 \ 5. \\ 24 \ 5. \\ 11 \ 5. \\ \end{cases}$	E_{γ} sssssss I _{γ} .32 I1734.8 415 22025.3 844 42499.3 417 52614.2 425 5.24 5.11 5.

Decay to neutron-unbound levels:

- 1991Pr03: As mentioned above, $\%\beta^-1n=195$ was deduced by comparing the measured γ -ray yields from ¹⁸C and ¹⁸N decay reactions.
- 1988Mu08,1989Le16: ¹⁸C ions from fragmentation of ⁸⁶Kr (1988Mu08) and ⁴⁸Ca (1989Le16) on a ¹⁸¹Ta target at GANIL were selected using the LISE spectrometer and implanted into a Si detector. The telescope was surrounded by a thin plastic scintillator β counter and segmented 4π NE102A scintillator neutron array. Neutron energy thresholds of 440 keV and 350 keV were utilized in (1988Mu08) and (1989Le16), respectively. Delayed neutron emission probabilities of P_n=(25.0 45)% and (50 10)% were deduced, respectively.
- 1991Re02: ¹⁸C spallation products from 800 MeV proton bombardment of a ²³²Th target were transported to the TOFI spectrometer at LAMPF. The ions were implanted in a Si detector. The β -delayed neutrons were detected in a polyethylene moderated ³He counter; half-lives and β -delayed neutron probabilities were deduced from analysis of the number of implanted ions (per beam pulse) and the rate of β -delayed neutrons detected in the zero-threshold counter. The β -delayed neutron probability

¹⁸C β^- decay **1991Pr03** (continued)

=(43.3 65)% was deduced along with $T_{1/2}$ =94 ms 27.

New data was collected using the experimental configuration of (1991Re02), and the collective results were analyzed. In

(1994ReZZ) P_n =(30.2 17)% and $T_{1/2}$ =92.9 ms 53 are given. In later unpublished works (1995ReZZ,2008ReZZ), P_n =(31.5 15)% and $T_{1/2}$ =92 ms 5 are indicated. Other analyses of these data are found in (1993ReZX,1994KiZU).

1995Sc03: A ¹⁸C beam from the NSCL/A1200 was stopped in a plastic scintillator implantaion detector that was surrounded by an array of 15 plastic scintillator neutron detectors. The beam was collected in the stopping detector for 206 ms followed by a 222 ms beam-off counting period. Neutron events are recorded for β signals in the implantation detector in coincidence with neutron signals in the 99.7 cm flight path neutron array. Neutron energies were determined via time-of-flight; the array was configured with a low-energy threshold of \approx 750 keV. Background activity from ¹⁸N and ¹⁷N, the ¹⁸C decay daughters, was separable from the ¹⁸C decays.

Seven neutron groups are evident in the energy spectrum; however, the lack of n- γ coincidence data and unknown spectroscopy of ¹⁸N levels above the neutron binding precludes assignment of the neutron groups to ¹⁸N levels. This is further accented by the known participation of ¹⁷N*(1374,1850) levels in the β -n reaction as reported in (1991Pr03). The intensity of β -n neutron events reported in (1995Sc03) is (21.4 44)%. The neutrons can go to ¹⁷N*(0,1374,1849), which implies ¹⁸N excitation energies listed below.

E _n (MeV)	Branching Ratio (%)	$S_n + E(n + {}^{17}N_{g.s.})$	$S_n + E(n + {}^{17}N*(1374))$	$S_n + E(n + {}^{17}N^*(1849)).$
0.88 2	13.1 13	3.76 MeV 2	5.13 MeV 2	5.61 MeV 2.
1.55 2	3.65 41	4.47 MeV 2	5.84 MeV 2	6.32 MeV 2.
1.91 2	0.87 16	4.85 MeV 2	6.22 MeV 2	6.70 MeV 2.
2.47 2	0.76 13	5.44 MeV 2	6.81 MeV 2	7.29 MeV 2.
2.78 2	0.96 14	5.77 MeV 2	7.14 MeV 2	7.62 MeV 2.
3.25 3	1.24 15	6.27 MeV 3	7.64 MeV 2	8.12 MeV 2.
4.59 4	0.86 12	7.68 MeV 4	9.05 MeV 2	9.53 MeV 2.

Comments:

The $P_n=(31.5 \ 15)\%=\%\beta^-1n$ value from (2008ReZZ) is reluctantly accepted. The evaluator notes that amongst the Kim/Reeder articles and conference reports, a wide range of values are presented. Measurements listed above using neutron arrays having finite neutron-energy thresholds found discrete neutron groups adding to $\approx 20\%$ of the decay intensities; however, because the moderated ³He counter used by Reeder is sensitive to all energy neutrons, this approach should provide the most reliable P_n value.

Taking $\%\beta^-1n=(31.5 \ 15)$, the relative intensities of γ transitions reported in (1991Pr03) are normalized to give $\%\beta^-0n=(68.5 \ 15)$. In (1991Pr03), the feeding into ¹⁸N*(115,572) states is greater than the decay out of the states, which required adjustments to the intensity balance.

See theoretical discussion on β decay in (1993Ch06); also see (2016Ta07).

¹⁸N Levels

E(level) [†]	J^{π}	T _{1/2}	Comments
0.0	1-	619 ms 2	T=2
			$T_{1/2}$: From (2005Li60).
114.71 10	(2^{-})		
587.39 20	(2^{-})		
1734.75 19	(1,2)		
2614.35 21	1+		

[†] From Adopted Levels.

${}^{18}C\beta^-$ decay 1991Pr03 (continued)

β^{-} radiations

E(decay)	E(level)	Ιβ ^{-†‡}	Log ft	Comments
$(9.20 \times 10^3 \ 4)$	2614.35	61 5	4.16 4	av E β =4363 20
$(1.008 \times 10^4 \ 4)$	1734.75	73	5.29 19	av Eβ=4799 20

[†] (31.5 15)% of the β^- transitions feed levels that decay by neutron emission, so $\Sigma I \beta^- = (68.5 \ 15)\%$ for the β^- branches included here. [‡] Absolute intensity per 100 decays.

$\gamma(^{18}N)$

E_{γ}^{\dagger}	I_{γ} ‡	E _i (level)	\mathbf{J}_i^{π}	$E_f = J_f^{\pi}$	[Comments
114.7 <i>1</i>	90 13	114.71	(2^{-})	0.0 1-	%]	Iγ=28.7 <i>30</i>
472.7 2	24 7	587.39	(2^{-})	114.71 (2-) %]	$I_{\gamma} = 7.6\ 23$
879.7 2	44 4	2614.35	1^{+}	1734.75 (1,2	2) %	$I_{\gamma} = 14.0 \ 17$
1147.8 <i>4</i>	17 5	1734.75	(1,2)	587.39 (2-) %]	$I_{\gamma}=5.4 \ 17$
1619.9 <i>3</i>	25 5	1734.75	(1,2)	114.71 (2-) %]	$1\gamma = 8.0 \ 17$
1734.8 4	25 5	1734.75	(1,2)	$0.0 1^{-}$	%	$I\gamma = 8.0 \ 16$
2025.3 8	75	2614.35	1^{+}	587.39 (2-) %]	$I_{\gamma}=2.2\ 16$
2499.3 <i>4</i>	41 9	2614.35	1^{+}	114.71 (2-) %]	$I\gamma = 13.1 \ 3I$
2614.2 4	100 11	2614.35	1^{+}	0.0 1-	%]	$I_{\gamma}=31.9\ 29$

 † From Adopted Levels and Gammas.

 \ddagger For absolute intensity per 100 decays, multiply by 0.319 27.

$\frac{^{18}\mathbf{C}\,\beta^{-}\,\mathbf{decay}\qquad\mathbf{1991Pr03}}{\mathbf{1991Pr03}}$

Decay Scheme

