⁹Be(²²Ne,¹⁸N)

History				
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	R. Spitzer, J. H. Kelley	ENSDF	30-Jun-2021	

- 1994Sc01: ¹⁸N produced in the fragmentation of ²²Ne on a ⁹Be target at the NSCL/A1200 were identified via Δ E-E and implanted into a thin plastic scintillator. The scintallator was at the center of a large-area neutron array comprised of 15 curved plastic bars that covered 14.3% of 4π . Activity was collected for 2.14 s before a 2.01 s counting period. β -delayed neutron yields were measured along with the neutron energy spectrum. Neutron energies were determined by the time-of-flight between a β -particle in the implantation scintillator and a neutron in the array, which was 100.9 cm away. Decay to several ¹⁷O levels was observed. $\%\beta$ -n=2.2 4 was determined for production of high-energy neutrons above the 1 MeV threshold. T_{1/2}=630 ms 20 was determined. See also (1993ShZW).
- 1997Ne01,1997Co15,1998Ne04: ¹⁸N ions, produced by fragmenting a ²²Ne beam on a ⁹Be target using the LISE3 spectrometer, were implanted into a 8 K cooled Mg crystal that was oriented with β =6° and held within a variable magnetic field. Analysis of the asymmetry of the β radiation with field strength over the range 0-2000 Gauss indicated a 14.4% spin alignment.
- 1999Ne01: Following up on (1997Ne01), a β -level mixing NMR technique (β -LMR) was developed and utilized to determine μ =0.135 μ _N 15. They also obtained the ratio of the quadrupole interaction frequency to the magnetic moment and determined Q=+27 mb 4. Results are discussed and compared with shell model calculations.
- 2005Li60: A thick Be target was bombarded by a 68.8 MeV/nucleon ²²Ne beam to produce ¹⁸N ions that were selected and stopped in a thin plastic scintillation detector. Two different plastic scintillator arrays (neutron walls) were used to detect delayed neutrons with coverage of 30% and 2.2% of 4π sr for high energy and low energy, respectively. The neutron detection efficiecies were calibrated with the known ¹⁷N β^- n decay neutron spectrum. A set of 3 HPGe detectors were positioned around the target to measure γ -ray emissions.
- Beam was collected in the target for cycles of 2.0 s activation periods followed by 2.0 s counting periods. The result $T_{1/2}$ =619 ms 2 was obtained from analysis of the β -ray decay curve observed in the thin plastic catcher foil; a small 5% ²⁰O ($T_{1/2}$ =13.5 s) component was the main active beam contaminant. An exclusive gate on the on the strongest neutron peak at E_n = 0.58 MeV yielded the value $T_{1/2}$ =610 ms 23.
- Analysis of the ToF spectrum indicates decays of 11 neutron emitting states in ¹⁸O. The total observed Branching is 6.98% *146* for fast neutrons.
- 2007Lo05: A Be target was bombarded by a 68.8 MeV/nucleon ²²Ne beam to produce ¹⁸N ions that were selected and stopped in a thin plastic scintillation detector. A neutron sphere composed of eight identical plastic scintillator counters was used to detect delayed neutrons; each segment covered 3.75% of 4π sr. A calibration using ¹⁷N provided the neutron detection efficiency up to E_n=1.73 MeV. In this measurement, the emphasis was on fast neutrons. Nine neutron groups were observed, eight are in good agreement with those reported by (2005Li60). The total observed β -delayed Branching is 7.03% 146.
- Three $T_{1/2}$ values were obtained by analyzing the β -time spectra corresponding to the strongest three neutron peaks, 625 ms 30, 635 ms 40 and 609 ms 60.

¹⁸ N	Levels

E(level)	T _{1/2}	Comments	
0	619 ms 2	μ =(-)0.135 <i>15</i> (1999Ne01) Q=+0.027 <i>4</i> (1999Ne01) T _{1/2} : Half-lives of 630 ms <i>20</i> (1994Sc01), 619 ms <i>2</i> (2005Li05), and 625 ms <i>30</i> , 635 ms <i>40</i> and 609 ms <i>60</i> (2007Lo05) were determined in this reaction.	
		$\%\beta^-$ n: Analysis of fast neutrons measured by (2005Li60) and (2007Lo05) indicates consistency with $\%\beta^-$ n \geq 7%.	