⁹Be(¹⁸O,P2A) 1982Ol01

Type Author Citation Literature Cutoff Date

Full Evaluation R. Spitzer, J. H. Kelley ENSDF 30-Jun-2021

19820101: $^9\text{Be}(^{18}\text{O},\text{p2}\alpha)$ was used to produce ^{18}N at the entrance window of a cylindrical 1.5 cm by 13 cm 1.7 atm helium-filled gas cell at BNL. The ^{18}N was stopped in the gas and transferred to a counting area where decays to ^{18}O were observed. Branching ratios to ^{18}O states were determined. Analysis, including the assumption of 15% decay to non- γ -emitting states, determines $J^{\pi}=1^{-}$ for $^{18}\text{N}_{g.s.}$. Additionally, $T_{1/2}=624$ ms 12 was determined.

2003Fr32: $^9\text{Be}(^{18}\text{O},\text{p}2\alpha)$ at 80 MeV/nucleon was used to produce ^{18}N at the NSCL/A1200. The ^{18}N ions were implanted into a stack of four ΔΕ-ΔΕ-ΔΕ-detectors; most ions stopped in the the first three detectors. A 120% efficiency HPGe detector at θ =90° measured the β -delayed γ emissions from ^{18}N decay to ^{18}O . The K1200 cyclotron rf was dephased for a second with a two second periodicity so that implanted ions were identified and counted on an event-by-event basis in the first second, and the decay radiations were measured in the final second. A redundant set of amplifiers readout the Si detectors in the counting period, permitting a measurement of β -delayed α particles. The branching ratio to γ -emitting states in $^{18}\text{O}^*$ was determined as 76.7% 72(stat.) 55(sys.); the branch to $^{18}\text{O}_{g.s.}$ is estimated as 2.6% (1982Ol01).

Further discussion on $\beta^-\alpha$ (12.2 6)% from (1989Zh04) and β^- n (12.0 13)% from (1994ReZZ: update of 2001Re03) is given. The authors indicate their value is consistent with these results.

¹⁸N Levels

$$\frac{\text{E(level)}^{\dagger}}{0} \quad \frac{\text{J}^{\pi \dagger}}{1^{-}} \quad \frac{\text{T}_{1/2}^{\dagger}}{624 \text{ ms } I^2}$$

[†] From (1982Ol01).