²H(¹⁷N,P) 2013Ho21

	History					
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	R. Spitzer, J. H. Kelley	ENSDF	30-Jun-2021			

2013Ho21: XUNDL dataset compiled by TUNL (2013).

- A beam of $E(^{17}N)=13.6$ MeV/nucleon ions, produced via proton removal from ¹⁸O beam at the ATLAS In-Flight Facility, impinged on either 140 or 220 μ g/cm² deuterated polyethylene targets. Protons ejected from the target were detected upstream of the target using the HELIOS detector to reconstruct the event kinematics. Detection of the forward moving ¹⁸N/¹⁷N reaction product helped reduce backgrounds and remove contributions from beam contaminants.
- The proton kinematics were analyzed to deduce the reaction Q values and excitation energies for populated groups. The energy resolution (FWHM) was \approx 275 keV. Three groups corresponding to E_x=0.12, 0.74 and 1.17 MeV are observed below the neutron separation energy. The proton angular distributions are analyzed via PTOLEMY/DWBA analysis. The group at E_x=1.17 MeV is reasonably fitted using *l*=0, though the resulting spectroscopic factor is not reasonable; hence the group is suggested as either a single J^π=1⁻ state or a J^π=1⁻, 0⁻ doublet. An excess of strength is observed near E_x=2.2 MeV, which may correspond to previously known levels at E_x≈2.21 and 2.42 MeV (1983Pu01).
- The spectroscopic strengths and spectroscopic factors are deduced for the observed levels and limits of S \leq 0.07 and \leq 0.05 are set for unobserved states at E_x=0, 0.59 MeV, respectively.

¹⁸N Levels

E(level)	J^{π}	L	S [†]	Comments
120 10	2-	2	0.67 3	
740 10	3-	2	0.69 3	
1170 20	(1 ⁻)	0	0.96 19	The authors indicate $J^{\pi}=(1^{-})$ in the summary; though in the discussion and in Table I they suggest a possible doublet with $J^{\pi}=(0^{-} \text{ and } 1^{-})$ and S=0.72 14, assuming equivalent values
				of S for 0^- and 1^- states.

 $\approx 2.2 \times 10^3$?

[†] Absolute uncertainties in the normalized values estimated as 30%.