¹⁹**B** β⁻**n decay 1998Yo06,2003Yo02**

Type Author Citation Literature Cutoff Date
Full Evaluation J. Kelley, C. G. Sheu ENSDF 01-May-2017

Parent: ¹⁹B: E=0; $J^{\pi}=(3/2^{-})$; $T_{1/2}=2.92$ ms 13; $Q(\beta^{-}n)=2.579\times10^{4}$ 43; % $\beta^{-}n$ decay=71.8 83

¹⁹B-T_{1/2}: from 2003Yo02.

¹⁹B-Q(β -n): from 2012Wa38.

1998Yo06: A beam of ¹⁹B was produced by fragmentation of a 95 MeV/nucleon ⁴⁰Ar beam on a ¹⁸¹Ta target. ¹⁹B was selected using the RIKEN Projectile-fragment Separator (RIPS) and was implanted into a 12 mm thick plastic scintillator stopper. The β -decays were observed during the 100 ms beam-off period. The active stopper detected β -rays and a neutron detector array, consisting of 14 liquid scintillation counters covering about 80% of 4π detected delayed neutrons. The efficiency of the neutron array was 30% by comparison of a measurement of β -delayed neutrons of ¹⁵B, which has a known delayed neutron emission probability of 100%.

A preliminary value of $T_{1/2}$ =3.3 ms 2 was deduced from the least-squares fits to the data, and P_n =125% 32 was determined from the ratio of the number of detected neutrons to that of β -rays. P_n is more than 100% which implies the existence of significant multineutron emissions in the decay, reflecting its large Q_β value (26.5 MeV) compared with the multineutron separation energies of daughter nucleus ^{19}C (S_{1n} =160 keV, S_{2n} =4.4 MeV,....).

2003Yo02: The authors reevaluated the preliminary values $T_{1/2}$ and P_n reported in 1998Yo06. The new experiment was performed using RIPS at RIKEN Accelerator Research Facility as was in 1998Yo06. A beam of 19 B was produced by the projectile-fragmentation reaction of a 95 MeV/ u^{40} Ar beam on a 670 mg/cm² nat Ta target. The values of $T_{1/2}$ and P_{in} were determined by fitting a set of decay curves altogether to remove possible complication and inconsistency. The method of maximum likelihood was applied for deducing $T_{1/2}$ and P_{in} . The neutron detection efficiencies were treated carefully, the total detection efficiencies of direct and scattered neutrons are 31.5% 3 and 4.7% +2-6, respectively. The new values of $T_{1/2}$ =2.92 ms 13, P_{1n} =71.8% +83-91 and P_{2n} =16.0% +56-48 were determined with a better precision. P_{3n} was not determined because of the limited statistics. In the text it is unclear if the 1998Yo06 "preliminary" data are included in the 2003Yo02 analysis; we assume that it is and use the 2003Yo02 result to avoid possible data correlations.

1999Re16: A low statistics determination of $T_{1/2}$ =4.5 ms 15 was given.

¹⁸C Levels

 $\frac{\text{E(level)}}{0.0} \quad \frac{\text{J}^{\pi \dagger}}{(0^+)} \quad \frac{\text{T}_{1/2}^{\dagger}}{\text{92 ms 2}}$

Delayed Neutrons (18C)

 $\frac{E(^{18}C)}{0.0} = \frac{I(n)}{71.8.82} = \frac{I_{n-71.8.1.82}}{I_{n-71.8.1.82}} = 0.1$

Comments

[†] From Adopted dataset for ¹⁸C in ENSDF database.