⁹Be(¹⁹C,¹⁸B) 2010Sp02

History				
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	J. H. Kelley, C. G. Sheu	ENSDF	16-Jan-2016	

2010Sp02: The authors measured the unbound ground state of ¹⁸B by carrying out a single proton knockout reaction on ¹⁹C (E=62 MeV/nucleon). The resulting unbound ¹⁸B nuclei decayed into ¹⁷ β^+ n, which were detected using the NSCL/MoNA array and a charged particle detector. The ¹⁸B ground state energy was determined by kinematic reconstruction.

		¹⁸ B Levels
E(level)	\mathbf{J}^{π}	Comments
0	(2 ⁻)	%n=100 E(level): The upper limit of the scattering length is -50 fm, which corresponds to E $(17\beta^{+}n) < 10$ keV for the

E(level): The upper limit of the scattering length is -50 fm, which corresponds to $E_{rel.}(^{17}\beta^+n)<10$ keV for the unbound ¹⁸B ground state.

E(level): The observed state corresponds to an unbound neutron s-wave state. Such a ground state is consistent with the systematics of N=13 isotones where the $s_{1/2}$ orbit is expected to be lower than the $d_{5/2}$ orbit in ¹⁸B. E(level): It is possible that ¹⁸B is produced in an excited $J^{\pi}=1^{-}$ state which neutron decays to ¹⁷B*(1080).

However, discussion is given suggesting this is not the case.