Adopted Levels

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 110,265 (2009)	15-Nov-2008

 $Q(\beta^{-}) = -1.033 \times 10^{4} \ 9$; $S(n) = 1.156 \times 10^{4} \ syst$; $S(p) = -7.5 \times 10^{2} \ 5$; $Q(\alpha) = 6710 \ 5 \ 2012$ Wa38

Note: Current evaluation has used the following Q record -10.300 syst 11.62E3SY -730 506718 8 2003Au03.

Uncertainty is 200 keV and 120 keV in Q(β^-) and S(n), respectively (2003Au03).

 $Q(\alpha)$: E α =6569 10 implies $Q(\alpha)$ =6719 10 (cf. $Q(\alpha)$ =6718 8 in 2003Au03) assuming the observed 6569 α is a g.s. to g.s. transition. α decay from ¹⁷⁹TI:

A 6569 10 α from ¹⁷⁹Tl(g.s.), and 7096 10 and 7213 10 α 's from a 0.0+x level are observed, and all are correlated with a 6435 α from ¹⁷⁵Au (1998To14). Thus, α 's from the 0.0+x level feed ¹⁷⁵Au levels separated by 120 14 keV. Further, 1998To14 suggest that, unless the 6435 α from ¹⁷⁵Au is a doublet, the 6569 α and 7213 α feed either the same level in ¹⁷⁵Au or levels connected by a prompt γ . However, from systematics, both 1/2⁺ and 11/2⁻ isomeric states should exist in ¹⁷⁵Au, and 2002Ro17 report both a 6438 α and a 6412 α from ¹⁷⁵Au. Therefore, it seems probable that the 6435 α of 1998To14 is indeed a doublet. Correlation data from 2002Ro17 imply that the stronger α from ¹⁷⁹Tl(0+x) (i.e., the 7213 α) feeds ¹⁷⁵Au(11/2⁻) and the 6569 α from ¹⁷⁹Tl(g.s.) feeds ¹⁷⁵Au(1/2⁺). If the 6569 α is a g.s. to g.s. transition, then x ≥659 keV for the 0.0+x level of ¹⁷⁹Tl.

¹⁷⁹Tl Levels

J^{π}	T _{1/2}	Comments	
$0.0 (1/2^+) 0.23 \text{ s } 4$		$\% \alpha < 100; \% \varepsilon + \% \beta^+ = ?; \% p = ?$	
		%α: Only α decay has been observed. Theory predicts a partial T _{1/2} of 0.7 s (1997Mo25), implying %α≈70.	
		J^{π} : from $J^{\pi}(g.s.)$ systematics for heavier odd-A Tl isotopes.	
		$T_{1/2}$: from 6569α(t) (1998To14). Others: 0.42 s 6 (2002Ro17, 6568α), 0.43 s 35 (1996Pa01, 6568α), 0.16 s +9-4 (1983Sc24, 6560α).	
$-x$ $(11/2^{-})^{\dagger}$ 1.5 ms 3	1.5 ms 3	$\%\alpha \le 100; \%$ IT=?; $\%\varepsilon + \%\beta^+$ =?; $\%$ p=?	
		$\%\alpha$: Only α decay has been observed.	
		E(level): \geq 659; see comment above concerning α decay from ¹⁷⁹ Tl.	
		T _{1/2} : weighted average of 1.7 ms 2 (2002Ro17, 7201 α (t)), 1.8 ms 4 (1998To14, 7213 α (t)), 1.6 ms 8 (1998To14, 7096 α (t)), 0.7 ms +6-4 (1996Pa01, 7201 α (t)) and 1.4 ms 5 (1983Sc24, 7200 α (t)).	
	(1/2+)	$(1/2^+)$ $0.23 \text{ s} 4$	

[†] ¹⁸⁷Tl, ¹⁸⁵Tl, ¹⁸³Tl have isomeric h_{9/2} states at 336, 454, 625, respectively, which deexcite via E3 transitions to a d_{3/2} level at E=250-300 keV. These energy systematics suggest that the corresponding states in ¹⁸¹Tl and ¹⁷⁹Tl may occur near 850 and 1100 keV; from the E3 transition energy and T_{1/2} systematics, 1998To14 predict a T_{1/2} value for E3 deexcitation which is close to the level T_{1/2} observed for ¹⁸¹Tl but very much lower than T_{1/2}=1.5 ms adopted for the 0.0+x level of ¹⁷⁹Tl. 1998To14 suggest, therefore, that the h_{11/2} orbital may lie below the h_{9/2} orbital in ¹⁷⁹Tl, allowing α decay to compete successfully with M4 γ deexcitation. Note that ¹⁷⁷Tl has an isomeric (11/2⁻) level at E=807 *18* (1999Po09).