172 Yb(11 B,4n γ) **1972Le04**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 110, 265 (2009)	15-Nov-2008

1972Le04: (¹¹B,4n γ), E=53 MeV; target: 98% enriched ¹⁷²Yb. Measured E γ , I γ at θ =90°; $\gamma\gamma$ fast-slow coin; excit. Detector:Ge(Li). Coin resolving time \approx 15 ns.

¹⁷⁹Re Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0#	5/2+		
0+x ^{&}	9/2-		E(level): x=87.54 23 from Adopted Levels.
65.3 [@] 3	5/2-	95 μs 25	T _{1/2} : from 1972Le04.
65.3+y [@]	9/2-		E(level): y=50.29 keV from Adopted Levels.
123.8 [#] 1	7/2+		
165.5+x ^{&} 10	$11/2^{-}$		
234.0+y [@] 10	$13/2^{-}$		
278.6 [#] 10	9/2+		
359.8+x ^{&} 10	13/2-		
464.7 [#] 11	$11/2^{+}$		
519.8+y [@] 11	$17/2^{-}$		
577.6+x ^{&} 10	$15/2^{-}$		
675.9 [#] 11	$13/2^{+}$		
818.9+x ^{&} 10	$17/2^{-}$		
911.8+y [@] 11	$21/2^{-}$		
912.9 [#] 11	$15/2^{+}$		
1076.7+x ^{&} 10	$(19/2^{-})$		
1165.5 [#] 11	$17/2^{+}$		
1353.6+x ^{&} 10	$21/2^{-}$		
1395.4+y [@] 11	$25/2^{-}$		
1435.7 [#] 11	$19/2^{+}$		
1954.8+y [@] 11	$29/2^{-}$		

[†] From least-squares fit to $E\gamma$.

[±] Authors' values, based on deduced band structure and analogy with ¹⁷⁷Re. also, $\gamma(\theta)$ for transitions In the 1/2[541] band, when measurable, were consistent with stretched Q.

[#] Band(A): 5/2[402] g.s. band.

[@] Band(B): 1/2[541] band, $\alpha = +1/2$.

& Band(C): 9/2[514] band.

$\gamma(^{179}\text{Re})$

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	α^{\ddagger}	Comments
65.3 <i>3</i>	78 25	65.3	5/2-	0.0 5/2+	(E1)	0.231 5	Mult.: since relatively little direct feeding to levels At the bottom of a band would Be expected In this reaction, Ti(65.3 γ) should Be comparable to Ti(169 γ)=118 6; if so, $\alpha(\exp)(65.3\gamma)\approx0.5$, compared with $\alpha(E1)=0.23$, $\alpha(M1)=3.08$ and $\alpha(E2)=24.8$, thus favoring mult=E1.

19/2Le04 (continued	172 Yb (11 B ,4n γ)	1972Le04 (continued)
---------------------	--	----------------------

					$\gamma(17)$	⁷⁹ Re) (co	ntinued)
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult.	α^{\ddagger}
123.8 <i>I</i>	41 5	123.8	$7/2^{+}$	0.0	$5/2^{+}$		
155.6 <i>1</i>	43 5	278.6	$9/2^{+}$	123.8	$7/2^+$		
165.5 <i>1</i>	100 4	165.5+x	$11/2^{-}$	0+x	9/2-		
168.7 <i>1</i>	75 4	234.0+y	$13/2^{-}$	65.3+y	$9/2^{-}$	[E2]	0.575
186.1 2	31 <i>3</i>	464.7	$11/2^{+}$	278.6	$9/2^{+}$		
194.3 <i>1</i>	106 6	359.8+x	$13/2^{-}$	165.5+x	$11/2^{-}$		
211.1 3	28 8	675.9	$13/2^{+}$	464.7	$11/2^+$		
217.8 <i>1</i>	69 7	577.6+x	$15/2^{-}$	359.8+x	$13/2^{-}$		
237.1 3	25 <i>3</i>	912.9	$15/2^{+}$	675.9	$13/2^{+}$		
241.4 2	47 5	818.9+x	$17/2^{-}$	577.6+x	$15/2^{-}$		
252.7 3	12 <i>3</i>	1165.5	$17/2^{+}$	912.9	$15/2^{+}$		
257.8 2	22 2	1076.7+x	$(19/2^{-})$	818.9+x	$17/2^{-}$		
270.2 4	92	1435.7	$19/2^{+}$	1165.5	$17/2^{+}$		
277.0 2	23 4	1353.6+x	$21/2^{-}$	1076.7+x	$(19/2^{-})$		
285.8 1	69 10	519.8+y	$17/2^{-}$	234.0+y	$13/2^{-}$		
392.0 <i>1</i>	478	911.8+y	$21/2^{-}$	519.8+y	$17/2^{-}$		
397.4 <i>3</i>	13 <i>3</i>	675.9	$13/2^{+}$	278.6	9/2+		
411.9 <i>3</i>	29 6	577.6+x	$15/2^{-}$	165.5+x	$11/2^{-}$		
448.2 2	18 <i>3</i>	912.9	$15/2^{+}$	464.7	$11/2^{+}$		
459.2 <i>3</i>	14 <i>3</i>	818.9+x	$17/2^{-}$	359.8+x	$13/2^{-}$		
483.6 2	32 5	1395.4+y	$25/2^{-}$	911.8+y	$21/2^{-}$		
489.5 2	15 <i>3</i>	1165.5	$17/2^{+}$	675.9	$13/2^{+}$		
499.0 <i>3</i>	22 4	1076.7+x	$(19/2^{-})$	577.6+x	$15/2^{-}$		
522.7 4	13 <i>3</i>	1435.7	$19/2^{+}$	912.9	$15/2^{+}$		
534.5 4	13 <i>3</i>	1353.6+x	$21/2^{-}$	818.9+x	$17/2^{-}$		
559.4 <i>3</i>	25 5	1954.8+y	29/2-	1395.4+y	$25/2^{-}$		

[†] From (¹¹B,4n γ) (1972Le04), except As noted.

[±] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁷⁹₇₅Re₁₀₄

¹⁷²Yb(¹¹B,4nγ) 1972Le04

¹⁷⁹₇₅Re₁₀₄

234.0+y

65.3+y

65.3

11/2-

9/2-

165.5+x

0+x

166

13/2-

9/2-

5/2-

278.6

123.8

0.0

9/2+

7/2+

5/2+

156

124

169