183 Н
g α decay 1979На10,1980Sc09,1992ВоZО Type Author Citation Literature Cutoff Date Full Evaluation Coral M. Baglin NDS 110, 265 (2009) 15-Nov-2008 Parent: ¹⁸³Hg: E=0.0; $J^{\pi}=1/2^-$; $T_{1/2}=9.4$ s 7; $Q(\alpha)=6039$ 4; % α decay=11.7 20 Others: 1970Ha18. $T_{1/2}(183HG)=9.4 \text{ s } 7 \text{ is the weighted average of } 8.8 \text{ s } 5 \text{ (1970Ha18)}, 12 \text{ s } 2 \text{ (1984Ma41)} \text{ and } 10.7 \text{ s } 8 \text{ (1992BoZO)} \text{ (unweighted average is } 10.5 \text{ s } 9).}$ #### 179Pt Levels | E(level) [†] | $J^{\pi \ddagger}$ | Comments | |-------------------------------|--------------------|---| | | 1/2- | | | 71.4 <mark>#</mark> <i>10</i> | | | | 87.4 [#] <i>10</i> | | | | 241.2 [#] <i>14</i> | $7/2^{-}$ | E(level): uncertainty assumes 1 keV uncertainty In 154γ energy. | [†] From Eγ. #### α radiations | $E\alpha^{\dagger}$ | E(level) | $I\alpha^{\ddagger\&}$ | HF# | Comments | |-----------------------------|----------|------------------------|-------|---| | 5669 10 | 241.2 | 0.3 | 48 9 | | | 5819 [@] <i>10</i> | 87.4 | 3.7 7 | 18 5 | | | 5834 [@] 10 | 71.4 | 5.2 10 | 15 5 | | | 5904 <i>5</i> | 0.0 | 91 <i>17</i> | 1.8 5 | other E α : 5900 (1992BoZO), 5905 15 (1970Ha18). | [†] Measured value from 1979Ha10 minus 1.0 keV (the correction recommended by 1991Ry01 for Eα from 1979Ha10), except as noted. ¹⁸³Hg-%α decay: from %I(5904α)=10.6 20 (1970Ha18) and %α=1.07 14 for all other α branches (1979Ha10); from Iα/I(K x ray). Evaluator adopts this value in preference to %I(5904α)=23.2 14 (1980Sc09, from parent-daughter Iα comparison) because it leads to a more reasonable hindrance factor for the 5904α transition (see comment on HF). [‡] From Adopted Levels. [#] Band(A): 1/2[521] g.s. band. [‡] Relative I α from 1979Ha10, normalized so I α (total)=100. [#] Calculated by evaluator using r_0 =1.517 5 (the unweighted average of r_0 (¹⁷⁸Pt)=1.522 5 and r_0 (¹⁸⁰Pt)=1.512 11 from 1998Ak04), and assuming $T_{1/2}$ (¹⁸³Hg)=9.4 s 7 and %α(¹⁸³Hg)=0.117 20 (1979Ha10). If, instead, %α=0.255 15 (1980Sc09) were assumed, HF would be 0.8, 7.1, 8.5, 22 to the 0, 71, 87, 241 levels, respectively, whereas HF≈2 is expected for the g.s. transition. It should be noted that %α from 1980Sc09 is based on parent-daughter relationships, a method which might be expected to be more reliable than the comparison of Iα and I(K x ray) used by 1970Ha18 and 1979Ha10; however, 1980Sc09 had to apply a significant correction to the daughter Iα data because the range of the recoils exceeded their implantation depth. [®] 1979Ha10 report a $5835\alpha+5820\alpha$ doublet based on $\alpha\gamma$ coin spectra, consistent with E α =5830~15 and I α =9.4~17 reported by 1970Ha18 for unresolved doublet. E α =5832~8, recommended by 1991Ry01 for the α group feeding the 71-keV level of ¹⁷⁹Pt, is not adopted because it apparently overlooks the fact that data from 1970Ha18 are for the doublet. [&]amp; For absolute intensity per 100 decays, multiply by 0.117 20. ### ¹⁸³Hg α decay 1979Ha10,1980Sc09,1992BoZO (continued) | | | | | | | γ (179Pt) | | |------------------------|--------------|----------------------|-------------------------------------|-------|----------------|----------------------|---| | E_{γ}^{\dagger} | $E_i(level)$ | \mathbf{J}_i^{π} | \mathbf{E}_f \mathbf{J}_f^{π} | Mult. | α [@] | $I_{(\gamma+ce)}$ ‡# | Comments | | 71.4 10 | 71.4 | 3/2- | 0.0 1/2- | [M1] | 3.15 14 | 5.2 | ce(L)/(γ +ce)=0.584 17; ce(M)/(γ +ce)=0.135 7;
ce(N+)/(γ +ce)=0.0399 22
ce(N)/(γ +ce)=0.0334 19; ce(O)/(γ +ce)=0.0060 4;
ce(P)/(γ +ce)=0.000405 23 | | 87.4 10 | 87.4 | 5/2- | 0.0 1/2- | [E2] | 8.6 5 | 4.0 | ce(K)/(γ +ce)=0.078 4; ce(L)/(γ +ce)=0.614 24;
ce(M)/(γ +ce)=0.159 11; ce(N+)/(γ +ce)=0.045 4
ce(N)/(γ +ce)=0.039 3; ce(O)/(γ +ce)=0.0060 5;
ce(P)/(γ +ce)=1.28×10 ⁻⁵ 8 | | 153.8 | 241.2 | 7/2- | 87.4 5/2 | [M1] | 1.95 | 0.3 | ce(K)/(γ +ce)=0.544 5; ce(L)/(γ +ce)=0.0900 15; ce(M)/(γ +ce)=0.0208 4; ce(N+)/(γ +ce)=0.00614 11 ce(N)/(γ +ce)=0.00515 9; ce(O)/(γ +ce)=0.00926 16; ce(P)/(γ +ce)=6.24×10 ⁻⁵ 11 E $_{\gamma}$: uncertainty unstated by authors but probably 1 keV, the same As for other E $_{\gamma}$ data from this study. | [†] From 1979Ha10. ## ¹⁸³Hg α decay 1979Ha10,1980Sc09,1992BoZO #### Decay Scheme $^{^{\}ddagger}$ Intensity per 100 parent α decays (from I α). [#] For absolute intensity per 100 decays, multiply by 0.117 20. [@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified. #### 183 Н
g α decay — 1979 На10,1980 Sc09,1992 ВоZO Band(A): 1/2[521] g.s. band