¹⁷⁹Ir ε decay **1992Bo19,2000Ro41**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 110, 265 (2009)	15-Nov-2008

Parent: ¹⁷⁹Ir: E=0.0; $J^{\pi}=(5/2)^{-}$; $T_{1/2}=79$ s *1*; $Q(\varepsilon)=4943$ 21; $\%\varepsilon+\%\beta^{+}$ decay=100.0

2000Ro41: measured E(ce), I(ce) using high-resolution magnetic spectrograph. source from successive decays from ¹⁸³Hg source.
 1992Bo19: source from 240 MeV ³⁶Ar bombardment of ¹⁴⁸Nd enriched to 93.2%; He-jet tape transport; two Ge detectors; measured Eγ, Iγ, γ-K x ray coin, γγ coin, γ(t).

The decay scheme is that of 1992Bo19 with the addition of known 115 and 210 levels to accommodate the 95 γ reported by 2000Ro41. Since Q+ is large (4943 21), and decay is observed only to populate levels with E≤320 keV, this decay scheme may be far from complete and the evaluator, therefore, considers deduced $\varepsilon + \beta^+$ feeding and log *ft* values to be unreliable. The apparent $\varepsilon + \beta^+$ feeding of the 243, 273 and 320 levels (J^π=(9/2)⁺, (9/2⁻), 9/2⁻, respectively) is possibly consistent with a parent J^π of 7/2⁻, but not 5/2⁻; however, this may instead be attributable to incompleteness of the decay scheme. The latter branch must be <2% (from log f^{4u}t>8.5) and the other two should be negligible for decay from a (5/2)⁻ parent. The principal decay branch appears to occur to the 145-keV, (7/2)⁻ level and is almost certainly an allowed transition.

¹⁷⁹Os Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
0.0 ^{<i>a</i>}	1/2-	
86.30 ^a 10	3/2-	
100.2 ^{<i>a</i>} 1	$5/2^{-}$	
115.4 8	$(5/2^{-})$	E(level): from Adopted Levels. energy held fixed In least-squares adjustment.
145.40 ^{&} 15	$(7/2)^{-}$	apparent $\%\varepsilon + \%\beta^+ = 58$ 6 to this level (log $ft \approx 5.1$).
210.8 10	$(7/2^{-})$	E(level): introduced by evaluator to accommodate known 95γ reported by 2000Ro41.
242.90 [@] 18	$(9/2)^+$	apparent $\%\varepsilon + \%\beta^+ = 14.3 \ 8$ to this level (log $ft \approx 5.7$).
273.10 ^{&} 18	(9/2-)	apparent $\%\varepsilon + \%\beta^+ = 7.4$ 16 to this level (log $ft \approx 6.0$).
320.20 ^{#a} 23	9/2-	apparent $\%\varepsilon + \%\beta^+ = 3.7 4$ to this level (log $ft \approx 6.3$).

[†] From $E\gamma$.

[‡] From Adopted Levels.

[#] An additional 24-keV γ is expected (from Adopted Gammas) to deexcite the 320 level. Based on I(220 γ) here and adopted branching, its photon intensity in ¹⁷⁹Ir ε decay is expected to be 0.052 *12*, which is presumably far below the sensitivity limit in the decay study by 1992Bo19.

[@] Band(A): 9/2[624] band.

[&] Band(B): 7/2[514] band.

^a Band(C): 1/2[521] band.

$\gamma(^{179}\text{Os})$

I γ normalization: =0.075 4 from Σ (I(γ +ce) to g.s.)=100%, assuming no ε + β^+ branch to g.s. (2nd forbidden transition), the mean of M1 and E2 theory values for $\alpha(86\gamma)$, and mult(100.2 γ)=E2. However, if the decay scheme is incomplete (as seems likely given the significant intensity imbalance at 9/2⁻ and 9/2⁺ levels in this decay scheme), additional g.s. transitions may exist, necessitating a reduction in I γ normalization. Consequently, I γ normalization is given as approximate only.

E_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	$I_{(\gamma+ce)}^{\#}$	Comments
(13.9)	100.2	5/2-	86.30	3/2-	8.0×10 ² 16	$I_{(\gamma+ce)}$: from intensity balance at 86 and 100 levels, $Ti(14\gamma) \le 930 \ 30$ and $Ti(14\gamma) \ge 703 \ 59$, respectively.

¹⁷⁹₇₆Os₁₀₃-2

$\frac{179}{10} \text{Ir } \varepsilon \text{ decay} \qquad 1992Bo19,2000Ro41 \text{ (continued)}$									
$\gamma(^{179}\text{Os})$ (continued)									
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^π	Mult. [‡]	δ	α [@]	Comments
45.2 1	97 5	145.40	(7/2)-	100.2	5/2-	M1		9.97	$\alpha(L)=7.69 \ 12; \ \alpha(M)=1.77 \ 3; \ \alpha(N+)=0.511$ $\beta \alpha(N)=0.431 \ 7; \ \alpha(O)=0.0744 \ 12;$ $\alpha(P)=0.00552 \ 9$ Mult.: L1:L2:M1=1530 \ 330:190 \ 40:370 \ 80 (2000R041).
86.3 1	100 5	86.30	3/2-	0.0	1/2-	M1+E2	-5.3 7	8.04	$\alpha(K)=1.13$ 7; $\alpha(L)=5.21$ 9; $\alpha(M)=1.333$ 24; $\alpha(N+)=0.367$ 7 $\alpha(N)=0.319$ 6; $\alpha(O)=0.0471$ 9; $\alpha(P)=0.000145$ 8 Mult., δ : from Adopted Gammas. K:L3:(M1+M2):M3=400 100:770 150:240 50:210 50 (2000Ro41) implies E2(+M1), δ >2.7. %Iy=7.5 3 assuming suggested normalization.
95.4		210.8	(7/2 ⁻)	115.4	(5/2-)	M1		6.44	
97.5 1	135 7	242.90	(9/2)+	145.40	(7/2)-	E1		0.417	Mult.: from $\alpha(\mathbf{K}) \exp \approx 6$ (2000Ro41). $\alpha(\mathbf{K}) = 0.338 \ 5; \ \alpha(\mathbf{L}) = 0.0614 \ 9;$ $\alpha(\mathbf{M}) = 0.01415 \ 21; \ \alpha(\mathbf{N}+) = 0.00396 \ 6$ $\alpha(\mathbf{N}) = 0.00339 \ 5; \ \alpha(\mathbf{O}) = 0.000545 \ 8;$ $\alpha(\mathbf{P}) = 2.74 \times 10^{-5} \ 4$
100.2 <i>I</i>	77 4	100.2	5/2-	0.0	1/2-	(E2)		4.32	$\begin{aligned} &\alpha(\mathbf{K}) = 0.796 \ 12; \ \alpha(\mathbf{L}) = 2.66 \ 4; \ \alpha(\mathbf{M}) = 0.680 \\ &10; \ \alpha(\mathbf{N}+) = 0.187 \ 3 \\ &\alpha(\mathbf{N}) = 0.1630 \ 24; \ \alpha(\mathbf{O}) = 0.0240 \ 4; \\ &\alpha(\mathbf{P}) = 8.36 \times 10^{-5} \ 12 \\ &\text{Mult.} \delta; \ \mathbf{K}:\mathbf{L}2 = 180 \ 40:250 \ 50 \ (2000\text{Ro}41). \\ &\delta(\mathbf{E}2,\mathbf{M}1) > 3. \end{aligned}$
127.7 <i>1</i>	31 3	273.10	(9/2-)	145.40	(7/2)-	(M1+E2)		2.2 6	α (K)=1.4 9; α (L)=0.62 25; α (M)=0.15 7; α (N+)=0.043 19 α (N)=0.037 17; α (O)=0.0058 22; α (P)=0.00016 12
220.0 2	40 4	320.20	9/2-	100.2	5/2-	(E2)		0.242	$\begin{aligned} &\alpha(\mathbf{K}) = 0.1323 \ 19; \ \alpha(\mathbf{L}) = 0.0828 \ 12; \\ &\alpha(\mathbf{M}) = 0.0208 \ 3; \ \alpha(\mathbf{N}+) = 0.00577 \ 9 \\ &\alpha(\mathbf{N}) = 0.00500 \ 8; \ \alpha(\mathbf{O}) = 0.000761 \ 11; \\ &\alpha(\mathbf{P}) = 1.259 \times 10^{-5} \ 18 \end{aligned}$

[†] From 1992Bo19, except As noted.
[‡] From Adopted Gammas, except as noted.
[#] For absolute intensity per 100 decays, multiply by ≈0.075.
[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁷⁹Ir ε decay 1992Bo19,2000Ro41

¹⁷⁹₇₆Os₁₀₃