¹⁸⁰**Hf**(\mathbf{t} , α) **1992Bu12**

History						
Type	Author	Citation	Literature Cutoff Date			
Full Evaluation	Coral M. Baglin	NDS 110, 265 (2009)	15-Nov-2008			

E(t)=17 MeV. 93.9% ¹⁸⁰Hf target, magnetic spectrograph with photographic plates, FWHM \approx 18 keV; measured $\sigma(\theta)$ at $\theta(\text{lab})=12^{\circ}-55^{\circ}$; DWBA analysis.

179Lu Levels

E(level)	$J^{\pi \dagger}$	L [‡]	C^2S^{\ddagger}	Comments	
0@	7/2+	4	0.60		
35 <mark>&</mark> 5	9/2-	(5)	0.11		
123 [@] 2	9/2+	(4)	0.05		
186 <mark>&</mark> 1	11/2-	5	0.78		
273? [@] 2	$(11/2^+)^{\#}$				
357? <mark>&</mark> 2	$(13/2^{-})^{\#}$				
593 ^a 2	1/2+&3/2+	2	0.82	C^2S : if all strength is attributed to $3/2^+$ member of $1/2,3/2$ doublet in $1/2[411]$ band.	
653 ^b 2	5/2+	(2)	0.19		
735^{a} 2	5/2+&7/2+	2	0.40	C^2S : if all strength is attributed to $5/2^+$ member of $5/2,7/2$ doublet in $1/2[411]$ band.	
872? ^b 3	$(9/2^+)$		0.03	C^2S : if $J^{\pi}=9/2^+$.	
987 ^a 2	9/2+	(4)	0.12		
1099 <i>4</i> 1126 ^{<i>c</i>} 2	3/2+	(2)	0.16		
1120 2 1189 ^c 2	5/2+	2	0.10	Peak broader than others in spectrum; probable doublet.	
1262 3	5/2	-	0.10	Teak ordater than others in spectrum, producte doublet	
1292 5			0.11	C^2S : if $J^{\pi}=7/2^+$.	
1354 3					
1412 4					
1473 ^d 2	$11/2^{-}$	5 5	1.4		
1599 <i>3</i> 1679 <i>4</i>		5			
1771 4					
1820 4					
2048 4					
2115 5					
2136 <i>5</i> 2216 <i>3</i>					
2239 4					
2336 3					

[†] Proposed by authors based on band structure information deduced from comparison of C²S with predictions from Nilsson model (with pairing and Coriolis mixing included), except As noted.

[‡] Based on comparison of measured $\sigma(\theta)$ with DWBA predictions; $C^2S(exp) = \sigma(\theta)(exp)/(2N \sigma(\theta)(DWBA))$. The shape of $\sigma(\theta)$ can differentiate between L=2 and L≥4 for strong transitions. Evaluator shows L as tentative, unless distribution is fitted definitively and has good statistics. C^2S values serve only to indicate relative spectroscopic strengths.

[#] Tentative assignment from 1992Bu12 based on consistency of level energy with that expected for the band indicated assuming J(J+1) rule (1992Bu12).

[@] Band(A): 7/2[404] band.

[&]amp; Band(B): 9/2[514] band.

^a Band(C): 1/2[411] band.

^b Band(D): 5/2[402] band.

 180 **Hf**(\mathbf{t} , α) 1992Bu12 (continued)

¹⁷⁹Lu Levels (continued)

 c Band(E): tentative 3/2[411] band. d Band(F): 7/2[523] band.

180 Hf(t, α) 1992Bu12

11/2 1473

Band(E): Tentative 3/2[411] band

5/2⁺ 1189

3/2⁺ 1126

Band(C): 1/2[411] band

9/2⁺ 987

Band(D): 5/2[402] band

<u>(9/2⁺)</u> _ _ _ _ <u>872</u>

5/2⁺ &7/2⁺ 735

<u>5/2</u>⁺ 653

<u>1/2</u>⁺ & 3/2⁺ 593

Band(B): 9/2[514] band

<u>(13/2⁻)</u> _ _ _ <u>357</u>

Band(A): 7/2[404] band

<u>(11/2⁺)</u> _ _ _ _ <u>273</u>

11/2- 186

9/2+ 123

9/2- 35

7/2+ 0

 $^{179}_{71}\mathrm{Lu}_{108}$