History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Coral M. Baglin	NDS 110, 265 (2009)	15-Nov-2008					

Parent: ¹⁷⁹Pt: E=0.0; $J^{\pi}=1/2^-$; $T_{1/2}=21.2$ s 4; $Q(\varepsilon)=5814$ 14; $\%\varepsilon+\%\beta^+$ decay=99.76 3 2000Ro41: measured E(ce), I(ce) using high-resolution magnetic spectrograph. source: descendant of ¹⁸³Hg source. 1993Me13: measured E γ , $I\gamma$, $\gamma\gamma$ coin, K x ray- γ coin, γ (t).

¹⁷⁹ Ir Levels	
--------------------------	--

E(level)	J^{π}^{\dagger}	Comments
$\begin{array}{c} 0.0^{\ddagger} \\ 99.8^{\ddagger} \\ 193.1^{\ddagger} \\ 271.5 \\ 343.0 \\ 377.8 \\ 493.1 \\ 502.2 \end{array}$	$(5/2)^{-} (1/2)^{-} (3/2)^{-} (1/2,3/2)^{+} (1/2,3/2,5/2^{-}) (1/2,3/2^{-}) (1/2,3/2^{-}) (1/2,3/2^{-}) (1/2,3/2^{-}) $	Possible configuration=(π 3/2[402]) (1993Me13).

[†] From Adopted Levels.

[±] Band(A): possible 1/2[541] band member.

ε, β^+ radiations

Since $Q(\varepsilon)$ is large (=5814), and decay is only observed to populate levels with E \leq 502 keV, the decay scheme is probably incomplete, and the deduced $\varepsilon + \beta^+$ feeding and log *ft* values may be unreliable. Also, significant I γ remains unplaced.

E(decay)	E(level)	$I\beta^+$ ‡	$I\varepsilon^{\ddagger}$	$\log ft^{\dagger}$	$I(\varepsilon + \beta^+)^{\ddagger}$	Comments
(5312 14)	502.2	4.9 8	3.7 6	5.58 8	8.6 14	av Eβ=1943.0 65; εK=0.3531 19; εL=0.0593 4; εM+=0.01866 10
(5321 14)	493.1	6.8 11	5.2 8	5.44 7	12.0 19	av E β =1947.2 65; ε K=0.3519 19; ε L=0.0591 4; ε M+=0.01860 10
(5436 14)	377.8	1.5 2	1.0 2	6.16 7	2.5 4	av E β =2000.4 65; ε K=0.3368 18; ε L=0.0565 3; ε M+=0.01779 10
(5471 14)	343.0	4.0 8	2.7 5	5.75 9	6.7 13	av Eβ=2016.4 65; εK=0.3324 18; εL=0.0558 3; εM+=0.01755 10
(5543 14)	271.5	9.4 13	6.2 9	5.40 7	15.6 22	av E β =2049.5 65; ε K=0.3234 18; ε L=0.0543 3; ε M+=0.01707 10
						Log <i>ft</i> : far too low for a first-forbidden transition. If the unplaced 1565.4 γ fed this level (consistent with $\gamma\gamma$ coin data), log <i>ft</i> would increase to a more acceptable value of 5.94 <i>12</i> .
(5621 14)	193.1	23 5	15 3	5.04 10	38 8	av Eβ=2085.8 65; εK=0.3139 17; εL=0.0526 3; εM+=0.01656 9
(5714 14)	99.8	11 9	65	5.4 4	17 14	av E β =2129.0 65; ε K=0.3029 17; ε L=0.0508 3; ε M+=0.01598 9

[†] These values probably do not constitute a reliable argument for level J^{π} because the three unplaced transitions have significant intensity. note that log *ft*=5.0 and 5.4, respectively, to the 193 and 272 levels which have opposite parity; this inconsistency could Be removed, however, if the 1565.4 γ fed the 272 level. placement of the 203.3 γ and 915.3 γ May significantly change log *ft* values to other levels, also.

[‡] Absolute intensity per 100 decays.

1

From ENSDF

 $^{179}_{77}\mathrm{Ir}_{102}\text{-}2$

			17	⁹ Pt ε dec	cay 1993	Me13,2000R	041 (cont	inued)	
					<u>2</u>	v(¹⁷⁹ Ir)			
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger\ddagger}$	E_i (level)	J_i^π	E_f	J_f^π	Mult.	δ	α #	Comments
93.3	16 <i>1</i>	193.1	(3/2)-	99.8	(1/2)-	M1(+E2)	≤0.52	7.33 18	$\alpha(K)=5.6 \ 6; \ \alpha(L)=1.3 \ 4; \\ \alpha(M)=0.32 \ 9; \ \alpha(N+)=0.092 \\ 24 \\ \alpha(N)=0.078 \ 24; \ \alpha(O)=0.013 \ 2; \\ \alpha(N)=0.013 \ 24; \ \alpha(O)=0.013 \ 25; \ \alpha(O)=0.$
									$\alpha(\text{N})=0.078\ 21,\ \alpha(\text{O})=0.015\ 3,\ \alpha(\text{P})=0.00070\ 7$ Mult., δ : from $\alpha(\text{K})$ exp=7 2 (2000Re41).
99.8	81 14	99.8	(1/2)-	0.0	(5/2)-	E2		4.65	$\alpha(K)=0.757 \ 11; \ \alpha(L)=2.93 \ 5; \alpha(M)=0.754 \ 11; \alpha(N+)=0.210 \ 3 \alpha(N)=0.182 \ 3; \ \alpha(O)=0.0278 \ 4; \alpha(P)=9.15\times10^{-5} \ 13 Mult.,\delta: \ from L2:L3=170 40:150 \ 30 \ (2000Ro41). \delta(M1.E2)>3 \ (2000Ro41). $
									I_{γ} =13.3% 9 assuming recommended I_{γ} normalization. I_{γ} : corrected for contribution
106.3	15 <i>1</i>	377.8		271.5	(1/2,3/2)+				from ^{1/9} Ir. Placed by evaluator; level, but no γ , shown in decay
171.7	100	271.5	(1/2,3/2)+	99.8	(1/2)-	E1		0.1003	$\alpha(K) = 0.0823 \ I2;$ $\alpha(L) = 0.01387 \ 20;$ $\alpha(M) = 0.00319 \ 5;$ $\alpha(N+) = 0.000913 \ I3$ $\alpha(N) = 0.00075 \ I1;$ $\alpha(O) = 0.0001311 \ I9;$
									α (P)=7.62×10 ⁻⁶ <i>11</i> Mult.: based on α (K)exp≈0.1 (1993Me13).
193.1	87 5	193.1	(3/2) ⁻	0.0	(5/2)-	[M1,E2]		0.7 3	$\alpha(\mathbf{K})=0.5 \ 3; \ \alpha(\mathbf{L})=0.140 \ 14; \\ \alpha(\mathbf{M})=0.034 \ 5; \\ \alpha(\mathbf{N}+)=0.0098 \ 12 \\ \alpha(\mathbf{N})=0.0083 \ 12; \\ \alpha(\mathbf{O})=0.00137 \ 10; \\ \alpha(\mathbf{P})=6 \ \mathbf{E} \ 5 \ 4$
x203.3 243.2 300.0 309.0 393.3 402.4 x915.3	15 <i>I</i> 41 5 32 3 20 3 41 3 32 3 48 7	343.0 493.1 502.2 493.1 502.2	$(1/2,3/2,5/2^-)$ $(1/2,3/2,5/2^-)$ $(1/2,3/2,5/2^-)$ $(1/2,3/2,5/2^-)$ $(1/2,3/2,5/2^-)$	99.8 193.1 193.1 99.8 99.8	$(1/2)^-$ $(3/2)^-$ $(3/2)^-$ $(1/2)^-$ $(1/2)^-$				Coin with 93γ , 193γ . I _{γ} : from coin spectrum.
^x 1565.4	68 6								Coin with 100γ , 172γ .

[†] From 1993Me13. [‡] For absolute intensity per 100 decays, multiply by 0.165 23.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$ ray not placed in level scheme.

¹⁷⁹Pt ε decay 1993Me13,2000Ro41

Decay Scheme Legend Intensities: $I_{(\gamma+ce)}$ per 100 parent decays $\begin{array}{l} I_{\gamma} < \ 2\% \times I_{\gamma}^{max} \\ I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ I_{\gamma} > 10\% \times I_{\gamma}^{max} \\ \text{Coincidence} \end{array}$ 0.0 21.2 s 4 Q_e=5814 14 $\%\epsilon + \%\beta^{+} = 99.76$ ¹⁷⁹₇₈Pt₁₀₁ $+ \underbrace{\bullet}^{4\varrho_2}_{3099,33}$ $I\beta^+$ Log ft<u>I</u>£ $\frac{(1/2,3/2,5/2^-)}{(1/2,3/2,5/2^-)}$ 502.2 4.9 3.7 5.58 493.1 6.8 5.2 5.44 +10₆₃ 2,6 •رجع ا جزع فرج 377.8 1.5 1.0 6.16 •171.7 E1 | | 12 - 12 - 18 (1/2,3/2,5/2-) 343.0 4.0 2.7 5.75 → 193, (M, 1) → 93,3, (M, 1) M(42) 24 (1/2,3/2)+ 271.5 9.4 6.2 5.40 (3/2)-193.1 23 15 5.04 - ^یرچنا بی وی ا $(1/2)^{-}$ 99.8 11 6 5.4 (5/2)-0.0

 $^{179}_{77}\mathrm{Ir}_{102}$

3

¹⁷⁹Pt ε decay 1993Me13,2000Ro41

 $^{179}_{77}\mathrm{Ir}_{102}$