		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 110,265 (2009)	15-Nov-2008

 $Q(\beta^{-})=-105.6 \ 4$; $S(n)=6098.99 \ 8$; $S(p)=7414.5 \ 21$; $Q(\alpha)=1806.3 \ 15 \ 2012Wa38$ Note: Current evaluation has used the following Q record $-105.6 \ 4 \ 6098.99 \ 87417.9 \ 201803.8 \ 15 \ 2003Au03.$ For hfs and/or isotope shift measurements, see 1994An14, 1994Ji07, 1994Zi04, 1995Ji15, 1996Zh35, 1997Zh36, 1999Le11.

179Hf Levels

Levels from (γ, γ') , (e,e') with E \leq 2310 have been omitted from XREF because their ΔE is large compared with the energy spacing of many low-lying levels.

Cross Reference (XREF) Flags

	H H C I	A 178 Hf(n, γ B 179 Lu β^{-179} Hf IT D 179 Hf IT	y) E=thermal decay decay (18.67 s decay (25.05 c	s) 1)	E 178 Hf(n,γ) E=7.78 eV res I 179 Ta ε decay F Coulomb excitation J 179 Hf(γ,γ'), (e,e') G 178 Hf(d,p), 180 Hf(d,t) K 176 Yb(9 Be,α2nγ), H 180 Hf(3 He,α) L 177 Hf(t,p)
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF		Comments
0.0 ^j	9/2+ <i>k</i>	stable	ABCDEFGHIJ	Κ	$\begin{split} & \mu = -0.6409 \ 13 \\ & Q = +3.79 \ 3 \\ & \Delta < r^2 > (^{179} \text{Hf} - ^{178} \text{Hf}) = +0.027 \ 2 \ (1994 \text{An14}), \ +0.028 \ 3 \ (1997 \text{Zh36}), \\ & +0.036 \ 1 \ (1999 \text{Le11}, \ 10\% \ \text{systematic normalization uncertainty not} \\ & \text{included; value is relative to } \Delta < r^2 > (^{178} \text{Hf}, ^{180} \text{Hf}) = 0.098 \ \text{as} \\ & \text{measured by } 1994 \text{Zi04}, \ \text{much higher than} \\ & \Delta < r^2 > (^{178} \text{Hf}, ^{180} \text{Hf}) = 0.075 \ 4 \ \text{and} \ 0.076 \ 5 \ \text{from } 1994 \text{An14} \ \text{and} \\ 1997 \text{Zh36}, \ \text{respectively}). \ \text{Other } \Delta < r^2 >: \ 1994 \text{Zi04}. \\ & < r^2 > ^{1/2} (\text{charge}) = 5.3358 \ 24 \ (2004 \text{An14}). \\ & \mu: \ \text{Atomic beam (direct) } (1989 \text{Ra17}, \ \text{from } 1973 \text{Bu25}). \\ & \text{Q: Muonic x-ray hfs } (1989 \text{Ra17}, \ \text{from } 1984 \text{Ta04} \ \text{and} \ 1983 \text{Ta14}). \\ & \text{Other values: } +3.7 \ 7 \ (\text{reanalysis of atomic beam data of } 1973 \text{Bu25}); \ \text{quoted in } 1985 \text{St28}, \ \text{originally given as } +5.1 \ 5 \ \text{in } 1973 \text{Bu25}); \ 3.93 \ 5 \ (1983 \text{Ol03}), \ +5.3 \ 5 \ (\text{uncorrected}, \ 1977 \text{Bu23}). \\ & J^{\pi}: \ \text{L}(^{3} \text{He}, \alpha) = 4 \ \text{for g.s. and } \text{M1} + \text{E2 } 123\gamma \ \text{from } 123 \ \text{level (for which} \ \text{L}(^{3} \text{He}, \alpha) = 6) \ \text{establishes } J^{\pi} = 9/2^{+} \ \text{for g.s. and } J^{\pi} = 11/2^{+} \ \text{for } 123 \ \text{level (for which} \ \text{L}(^{3} \text{He}, \alpha) = 6) \ \text{establishes } J^{\pi} = 9/2^{+} \ \text{for g.s. and } J^{\pi} = 11/2^{+} \ \text{for } 123 \ \text{level} \ \text{for mint with theoretical value of } -0.6 \ \text{calculated by evaluator for} \ J^{\pi} = 9/2^{+}, \ 9/2[624]. \ \text{Nilsson orbital assignment based also on energy} \ \text{systematics of this orbital in } ^{177} \text{Yb}, \ ^{181} \text{W, and } ^{183} \text{Os} \ (\text{N} = 107 \ \text{isotones}). \end{aligned}$
122.7904 ^j 24	11/2+ <i>k</i>	37 ps <i>3</i>	AB D FGH	K	Q=1.88 3 Q: Muonic x-ray hfs (1989Ra17, from 1984Ta10). J^{π} : see comment on $J^{\pi}(g.s.)$. T _{1/2} : from ce delay (1960B110) in Coulomb excitation.
214.3395 ¹ 22	7/2-	1.85 ns 4	ABC E G	KL	J^{π} : E1 214.3 γ to 9/2 ⁺ , E2 1245 γ from 3/2 ⁻ . Spectroscopic factor in (d,p) is consistent with 7/2 ⁻ 7/2[514]. Nilsson orbital assignment based also on energy systematics of this orbital in ¹⁷⁷ Yb and ¹⁸¹ W (N=107 isotones). T _{1/2} : weighted average of 1.86 ns 5 from ¹⁷⁹ Hf IT decay (18.67 s) and 1.82 ns 10 from (n, γ).
268.92 ^j 6	13/2+ <i>k</i>	21 ps 3	D FGH	K	XREF: G(269.1).

Continued on next page (footnotes at end of table)

¹⁷⁹Hf Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}		XREF		Comments
						$T_{1/2}$: from B(E2) in Coulomb excitation and adopted transition
						properties. I^{π} , $I = C$ is C^{2} , and $(d r)$; introduced E2 200 sets $0/2^{+}$ and $r = 1$
						J^{-1} : L=0 in ("He, α) and (d,p); intraband E2 2097 to 9/2" g.s. and M1+E2 146v to $11/2^+$ 123.
337.7178 ¹ 23	9/2-		AB	E GH	L	J^{π} : L=5 in (³ He, α); E2 101.3 γ from 5/2 ⁻ 476. Spectroscopic factor
375.0352 ^m 25	1/2 ⁻ⁿ	18.67 s 4	A	CEG	KL	in (d,p) is consistent with $9/2^{-7}/2[514]$. %IT=100
						J^{π} : L=0,1 in (d,p); M3 160.3 γ to 7/2 ⁻ 214. Spectroscopic factor in (d,p), and band structure with experimental decoupling constant a=+0.16, are consistent with 1/2 ⁻ 1/2[510]. Nilsson orbital assignment based also on energy systematics of this orbital in ¹⁷⁷ Yb and ¹⁸³ Os (N=107 isotones).
420.8943 ^m 25	3/2 ⁻ⁿ		A	EG	KL	T _{1/2} : from ¹⁷⁹ Hf IT decay (18.67 s). J ^{π} : M1 55.4 γ from 5/2 ⁻ 476; primary γ from 1/2 ⁺ in (n, γ) E=thermal. Spectroscopic factor in (d,p) is consistent with that for 3/2 ⁻ 1/2[510] level
438.68 ^j 8	15/2+ ^k			D FGH		$E(\text{level}): \text{ from } {}^{179}\text{Hf IT decay } (25.05 \text{ d}).$
476.3341 ^m 25	5/2 ⁻ⁿ		A	E GH	K	J^{-1} : Intraband M1+E2 1/07 to $13/2^{-2}$ 269 and E2 3167 to $11/2^{-1}$ 125. J^{π} : M1 γ to $J^{\pi} \leq 3/2^{-}$; L(d,p)=2,3,5. Spectroscopic factor in (d,p) is consistent with $5/2^{-1}$ 1/2[510].
487.709 ^{<i>l</i>} 5	(11/2 ⁻)		A	G	KL	J^{π} : spectroscopic factor in (d,p) is consistent with 11/2 ⁻ 7/2[514]; γ rays to 7/2 ⁻ and 9/2 ⁺ and 9/2 ⁻ ; continuation of band based on $I^{\pi} = 7/2^{-}$ 214 level
518.3279 ⁰ 24	5/2 ⁻ <i>p</i>	<0.2 ns	AB	ΕG	K	J^{π} : M1+E2 97.4 γ to 3/2 ⁻ 421, M1+E2 304.0 γ to 7/2 ⁻ 214. Nilsson orbital assignment based on rotational band structure.
582.230 ^m 3	7/2 ⁻ⁿ		A	EG	K	$J_{1/2}^{\pi}$: M1 105.9 γ to 5/2 ⁻ 476; spectroscopic factor in (d,p) is consistent with 7/2 ⁻ 1/2[510]; continuation of band based on J^{π} =1/2 ⁻ 375 level
614.204 <i>9</i> 3	1/2 ⁻	0.50 ns 15	A	Еg		J^{π} : M1+E2 193 γ to 3/2 ⁻ 421; E2 138 γ to 5/2 ⁻ 476. Nilsson orbital assignment based on rotational band structure with an experimental decoupling constant of a=+0.67.
616.7562 ⁰ 25	7/2 ⁻ p		AB	E gH	K	$T_{1/2}$: from centroid shift in ¹⁷⁸ Hf(n, γ) E=thermal. J ^{π} : M1+E2 98.4 γ to 5/2 ⁻ 518; M1+E2 279.0 γ to 9/2 ⁻ 338.
631.30 ^j 10	17/2 ⁺ <i>k</i>			D FGH	K	E(level): from ¹⁷⁹ Hf IT decay (25.05 d). J^{π} : intraband M1+E2 193 γ to 15/2 ⁺ 439 and E2 362 γ to 13/2 ⁺ 269.
664.3 ¹ 7	(13/2 ⁻)			G	KL	J^{π} : continuation of band based on $J^{\pi}=7/2^{-}$ 214 level.
679.516 ^{<i>q</i>} 3	$3/2^{-r}$		A	ΕG	K	J^{π} : M1 161.2 γ to 5/2 ⁻ 518; M1 304.5 γ to 1/2 ⁻ 375.
681.036 3	9/2 "		A		KL	J [*] : E1 204. γ to 5/2 4/6; 99 γ to 7/2 582; continuation of band based on $J^{\pi} = 1/2^{-3}$ 375 level.
701.0552 ^{<i>q</i>} 25	5/2 ⁻		A	E GH	K	J^{π} : M1 486.7 γ to 7/2 ⁻ 214; M1+E2 280.2 γ to 3/2 ⁻ 421.
720.613 ^s 3	3/2 ^{-t}	≤0.3 ns	A	EG	K	J ^{π} : M1+E2 345.6 γ to 1/2 ⁻ 375. Nilsson orbital assignment based on energy systematics of this orbital in ¹⁷⁷ Yb and ¹⁸¹ W (N=107 isotones).
732.2 [°] 6				G		$I_{1/2}$: from $HI(n,\gamma)$ E=thermal.
742.710 ^o 3	9/2 ⁻ <i>p</i>		A	G	K	J ^{π} : M1+E2 125.9 γ to 7/2 ⁻ 617; 620 γ to 11/2 ⁺ 123; continuation of 5/2[512] band.
788.185 ^s 3	$5/2^{-t}$		A	E GH	KL	J^{π} : M1+E2 171.4 γ to 7/2 ⁻ 617; E2 173.9 γ to 1/2 ⁻ 614.
842.9 ^m 10	$11/2^{-n}$			D F	K	J ^{<i>n</i>} : continuation of band based on $J^{n} = 1/2^{-375}$ level.
848.375 12	19/2 ⁺			DF	K	E(level): from ¹⁷ Hi 11 decay (25.05 d). J^{π} : intraband M1+E2 217 γ to $17/2^+$ 631 and E2 410 γ to $15/2^+$ 439.

Continued on next page (footnotes at end of table)

E(level) [†]	J ^π ‡	T _{1/2}		XREI	7	Comments			
849.200 ^{<i>q</i>} 3	7/2 ⁻		A	GH		J^{π} : M1+E2 106.5 γ to 9/2 ⁻ 743; M1 148.1 γ to 5/2 ⁻ 701; L(d,p)=2,3,5.			
865.9 ¹ 10	$(15/2^{-})$			G	KL	XREF: G(860.3).			
						J^{π} : continuation of 7/2[514] band.			
870.222 ^w 8	7/2-		AB	ΕG	K	J^{π} : E2 588.8 γ from 3/2 ⁻ , E1 870.2 γ to 9/2 ⁺ g.s. Spectroscopic factor in (d,p) is consistent with 7/2 ⁻ 7/2[503].			
889.1 [°] 10				G					
896.70 7	$\frac{11}{2^{-P}}$			G	K	J^{π} : continuation of $5/2[512]$ band.			
912.04 10	$\frac{9}{2}$			G	K	$J^{*}: 9/2 = 1/2[321]$ from band structure.			
935.643° 3	1/2 *		A	GH	KL.	XREF: H(908). J ^π : M1+E2 318.9γ to 7/2 ⁻ ; M1+E2 459.3γ to 5/2 ⁻ ; continuation of 3/2[512] band based on 3/2 ⁻ 721 level. L(³ He, α)=(3) for a 908-keV level which 1981Th05 assign to the 3/2[512] band; the reason for the energy mismatch is not known.			
958.6 ^c 14	12			G					
985.7 ^m 10 992.0 ^{cw} 15	$\frac{13}{2^{-n}}$ (9/2 ⁻)			G	K	J^{π} : continuation of band based on $J^{\pi}=1/2^{-375}$ level. J^{π} : observed in (d,p) with about the cross section expected for the			
1003 650 ¹¹ 1	5/2+		۸D	FC		9/2 $1/2[503]$ level. I^{π} : E2 1003 7a/ to $9/2^+$ g s. Dopulated by primary a/ from $1/2^+$ in			
1005.050 4	5/2		AD	ĿĠ		¹⁷⁸ Hf(n, γ) E=thermal. Configuration assignment based on γ -vibrational band observed at 1178 keV in ¹⁷⁸ Hf.			
1024.0 [°] 17				G					
1030.8 ^{cs} 6	$9/2^{-1}$			G	L				
10/3.565 13	1/2-		AB	g	L	J [*] : M1+E2 859.2 γ to 7/2 ⁻ 214; M1+E2 735.8 γ to 9/2 ⁻ 338; L(t,p)=0 for 7/2 ⁻ target. Level presumed to differ from that proposed as 5/2[523] bandhead in ¹⁷⁶ Vb(⁹ Be α 2n γ) (2000Mu06)			
1074.7 ^v 10	(5/2 ⁻)			g	K	E(level): presumed to differ from the $7/2^-$ 1073.6 level because the 735.8 γ which deexcites that level along with a 859.25 γ in ε decay and (n, γ) E=thermal is absent in (⁹ Be, α 2n γ), and its multipolarity is inconsistent with J^{π} =(5/2 ⁻) proposed in 2000Mu06 for the 1074.9 level			
1076.6 <mark>0</mark> 8	13/2 ⁻ <i>P</i>				К	J^{π} : continuation of band based on $J^{\pi} = 5/2^{-518}$ level.			
1078.349 ^{<i>u</i>} 10	$(7/2)^+$		A	G		J^{π} : E2(+M1) 1078.4 γ to 9/2 ⁺ g.s.; band assignment. However, 357.7 γ feeds 3/2 ⁻ 721 level.			
1080.4 [°] 13				G					
1084.73 ^j 15	21/2+ <i>k</i>			DF	K	E(level): from ¹⁷⁹ Hf IT decay (25.05 d). J^{π} : intraband M1+E2 237 γ to 19/2 ⁺ 848 and E2 453 γ to 17/2 ⁺ 631.			
1087.8 [°] 8				G					
1092.7 ¹ 13	(17/2 ⁻)			G	K	XREF: G(1096.8). J^{π} : continuation of 7/2[514] band.			
1105.74 ⁱ 16	25/2-	25.05 d 25		D	K	%IT=100 μ =7.4 3			
						$E(\text{level}), T_{1/2}$: from ¹⁷⁹ Hf IT decay (25.05 d).			
						J^{π} : E3 257 γ to 19/2 ⁺ 848; M2 21 γ to 21/2 ⁺ 1085. Supported by experimental μ which is consistent with theoretical value (=7.33) for J^{π} =25/2 ⁻ and a three-quasiparticle Nilsson orbital configuration= π 7/2[404] + ν 9/2[514] + ν 9/2[624] (1975Hu15). μ : Static nuclear orientation (1989Ra17, from 1975Hu15); relative to			
			_			$^{1/7}$ Hf(113 level).			
1105.92 ^y 9	(7/2+)		В			E(level): from ¹⁷² Lu β^- decay. J ^{π} : 891.5 γ to 7/2 ⁻ 214; 983.2 γ to 11/2 ⁺ 123; band assignment. These γ rays were not observed in ¹⁷⁸ Hf(n, γ) E=thermal, possibly due to			

¹⁷⁹Hf Levels (continued)

E(level) [†]	J#‡	T _{1/2}	XREF			Comments			
						γ rays from ¹⁷⁸ Hf contamination. Nilsson orbital assignment based on consistency of (³ He, α) spectroscopic factors for $J^{\pi}=9/2^+$ and 13/2 ⁺ band members with theoretical values for 7/2[633].			
1120.816 ^z 19	9/2+		AB	G		E(level): from ¹⁷⁹ Lu β^- decay. J ^{π} : M1+E2 998.1 γ to 11/2 ⁺ 123; E2,M1 740.5 γ from J \leq 5/2. M1+E0 1121 γ to 9/2 ⁺ . Configuration assignment based on β -vibrational 0 ⁺ state observed at 1199 keV in ¹⁷⁸ Hf.			
1138.8 0				G					
1150.411 5	1/2+		A	G		J ^{α} : E1 729.5 γ to 3/2 ⁻ 421; L=0,1 in (d,p). Configuration assignment based on strong E1 γ rays from all band members to the 1/2[510] rotational band.			
1162.4 [°] 7				G	L	Doublet.			
1168.95 ⁹ 3	(9/2*)		AB	GH		XREF: H(1161). J^{π} : 1046 γ to 11/2 ⁺ 123; 954 γ to 7/2 ⁻ 214; L(³ He, α)=(4); rotational structure in (d,p).			
1176.2 ^{cu} 9	$(9/2^+)$			G		J^{π} : band assignment.			
1185.848 ¹ 5	3/2+		Α	G	L	J^{π} : E1 810.8 γ to 1/2 ⁻ 375; E1,E2 484.8 γ to 5/2 ⁻ 701.			
1196.2 ^m 15	$15/2^{-n}$				K	J^{π} : continuation of 1/2[510] band.			
1198.4 ^V 13	$(7/2^{-})$			g	K				
1199.52 14	(7/2+)		AB	gн		XREF: H(1191). E(level): from ¹⁷⁹ Lu β ⁻ decay; 1199.34 <i>15</i> from (n,γ) E=thermal. J ^π : weak 680γ to 5/2 ⁻ 518; 1077γ to 11/2 ⁺ 123; log <i>ft</i> =7.7 from $7/2^+$; L=(4) in (³ He,α).			
1235.440 ¹ 4	5/2+		A	G		J ^{π} : E1 653.2 γ to 7/2 ⁻ 582; primary γ from 1/2 ⁺ in (n, γ) E=thermal.			
1249.552 ² 6	3/2-		Α	G		J ^{π} : M1 548.5 γ to 5/2 ⁻ 701; M1 570.0 γ to 3/2 ⁻ 680; primary γ ray from 1/2 ⁺ in ¹⁷⁸ Hf(n, γ) E=thermal. Configuration assignment based on strong E2 γ rays from members of this band to the 7/2[514] rotational band.			
1255.8 ^s 10	$11/2^{-t}$				K				
1269.445 ³ 6	3/2-		A	G		J ^{π} : M1+E2 655 γ to 1/2 ⁻ 614; M1 568 γ to 5/2 ⁻ 701. Nilsson orbital assignment based on approximate energy for this state expected from Nilsson diagram.			
1282.5 ^{<i>cy</i>} 9	$(11/2^+)$			GH		XREF: H(1275).			
1002 70 10	15/2 - n					J ^{α} : L=(6) in (³ He, α); band assignment.			
1285.7° 10	15/2 P $(3/2^{-} 5/2 7/2^{-})$			F	K	I^{π} : 617 $_{21}$ to $3/2^{-}$ 680: 1082 $_{21}$ to $7/2^{-}$ 214			
1290.04 12 $1309.8^{e} 6$	(3/2, 3/2, 7/2) $(17/2^+)$	3 ns 1		L	K	J^{π} : gammas to $17/2^+$ and $15/2^+$ and $13/2^+$ levels; level energy comparable to that calculated for lowest-energy $K^{\pi}=17/2^+$ three quasiparticle state (2000Mu06). T _{1/2} : from (${}^{9}\text{Be},\alpha 2n\gamma$).			
1313.500 ² 13	5/2-		A	G	L	J^{π} : M1+E2 634.0 γ to 3/2 ⁻ 680: E2 975.8 γ to 9/2 ⁻ 338.			
$1343 8^{l} 15$	$(19/2^{-})$			-	ĸ	I^{π} : continuation of 7/2[514] hand			
1344.6 [°] 6	+			G		L=4.6 in (d.p); so $J=7/2$ to $13/2$.			
1348.6 ^v 13	$(9/2^{-})$				K				
1350.7 ^j 7	$23/2^{+k}$			F	K				
1359.0 ^{cy} 5	$(13/2)^+$			GH		J^{π} : L=6 in (³ He, α); band assignment.			
1372.3 7	(17/2 ⁺)				K	J ^{π} : 933 γ to 15/2 ⁺ 439; 1104 γ to 13/2 ⁺ 269; band structure. Configuration=((ν 1/2[510])+(π 7/2[404])+(π 9/2][514])) (2000Mu06).			
1375 2 1381.9 ^m 15	7/2 ⁻ 17/2 ⁻ <i>n</i>				L K	J^{π} : L(t,p)=0 for 7/2 ⁻ target. J ^{π} : continuation of 1/2[510] band.			

Continued on next page (footnotes at end of table)

¹⁷⁹Hf Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}		XREF		Comments		
1386 5 [°] 6				G				
12020i	$(27/2^{-})$			U U	v			
1393.0 0	(27/2)	4			K W	$T_{\rm eff}$ from (4) in $(9$ $P_{\rm eff}$ (2.1)		
1404.5° 11	$(23/2^{+})$	4 ns 1			K	$I_{1/2}$: from $\gamma\gamma(t)$ in (² Be, $\alpha 2n\gamma$).		
$1404.5 + x^{j}$ 11	$(21/2^+)$	14 ns 2			K	E(level): x is expected to be small.		
						$T_{1/2}$: from $\gamma\gamma(t)$ in (⁹ Be, $\alpha 2n\gamma$).		
1405.2 ^{<i>c</i>2} 6	$(7/2^{-})$			G	L			
1428.6 ^{c3} 5	$(7/2^{-})$			G		J^{π} : rotational structure.		
1433.189 11	3/2-		Α	Е		J^{π} : M1+E2 956.8 γ to 5/2 ⁻ 476: primary γ from 1/2 ⁺ in (n, γ)		
	- 1					E=thermal.		
1436.353 6	7/2-		A	G	L	J^{π} : L(t,p)=0 for 7/2 ⁻ target; 566 γ M1+E0 to 7/2 ⁻ 870; 918 γ		
						M1(+E2) to $5/2^{-}$ 518; 315 γ to $9/2^{+}$ 1121.		
1437 5	$11/2^+, 13/2^+$			Н		E(level): from $({}^{3}\text{He},\alpha)$.		
						J^{π} : L=6 in (³ He, α).		
1453.1 [°] 7				G				
1458.994 ⁴ 9	$3/2^{-}$		Α	G		J^{π} : L(d,p)=0.1: M1+E2 670.9 γ to 5/2 ⁻ 788. Nilsson orbital		
110013371 3	0/2					assignment based on the approximate energy for this state		
						expected from Nilsson diagram.		
1482.031 ^{<i>x</i>} 5	$3/2^{+}$		A	G		J^{π} : E1 867.8 γ to $1/2^{-}$ 614; M1(+E2) 478.4 γ to $5/2^{+}$ 1004.		
	,					Configuration assignment based on strong γ rays to the 1/2[521]		
						collective band, and to the vibrational state at 1003.7 keV.		
1491.0 7	$(17/2^+)$				K	Configuration=(($\nu 1/2[521]$)+($\pi 7/2[404]$)+($\pi 9/2][514]$))		
						(2000Mu06).		
1498 2	7/2-				L	J^{π} : L(t,p)=0 for 7/2 ⁻ target.		
1509.2 [°] 8				G				
1520.6 ^e 10	$(19/2^+)$				K			
1529 3	7/2-				L	J^{π} : L(t,p)=0 for 7/2 ⁻ target.		
1530.2° 5	1/2+			G		J^{π} : L=0 in (d,p).		
1532.277 5	5/2+		A	G		J^{π} : M1 528.6 γ to 5/2 ⁺ 1004; M1+E0 329 γ from 5/2 ⁺ 1861.		
1534.6 ^{C4} 5	$(5/2^{-})$			G				
1557.4 [°] 5	1/2,3/2-			G	L	L=0,1 in (d,p).		
1570.1 [°] 7	$(9/2^{+})$			GH		XREF: H(1573).		
						$L(^{3}He,\alpha)=(4)$ and rotational structure.		
1572.56 3	3/2-		A	E		J^{π} : M1(+E0) 1151 γ to 3/2 ⁻ 421; E2 955 γ to 7/2 ⁻ 617; primary γ		
						from $1/2^+$ in (n,γ) E=thermal.		
1580.5 5				G		P 11		
1582.4 5				G		Doublet.		
1586.0° 6				G	L			
1598.4° 6				G				
1602.3 9	2/0- 1/0-			G	L	$II = E_2(, M_1) = 100(, 5/2 - 510) = M_1 = 0.1020 + 1/2 - 0.75$		
1614.125 13	3/2 ,1/2		A	G		$J^*: E_2(+M1) 1096\gamma$ to $5/2 - 518$; M1, E2 1239 γ to $1/2 - 3/5$;		
						primary γ from $1/2^{-1}$ in (n, γ) E=inermal.		
1617.7 ¹ , 16	$(21/2^{-})$				K	J^{n} : continuation of 7/2[514] band.		
1624.3 ^J 8	$25/2^{+K}$			F	K			
1638.7 [°] 6	$\leq 7/2$			G	L	J^{π} : L(d,p)=0-3.		
1658.4 ^{c5} 5	$(1/2^{-})$			G	L	J^{π} : L(d,p)=0,1,2; rotational band structure.		
1665.7 [°] 5	1/2+			e G		J^{π} : L=0 in (d,p).		
1668.957 6	3/2+		Α	е		J ^{π} : M1 518 γ to 1/2 ⁺ 1150; M1 434 γ to 5/2 ⁺ 1235.		
1672 5	$(11/2^+, 13/2^+)$			Н		E(level): from $({}^{3}\text{He},\alpha)$.		
						J^{π} : L=(6) in (³ He, α).		
1675.3 12	$(19/2^+)$				K			
1679.5+x ^f 8	$(23/2^+)$				К			
1687.13 4	$(3/2)^{-1}$		A	G		J ^{π} : M1(+E0) 1007.6 γ to 3/2 ⁻ 680; 816.4 γ to 7/2 ⁻ 870; primary γ		
						· · · · ·		

Continued on next page (footnotes at end of table)

E(level) [†]	$\mathrm{J}^{\pi \ddagger}$		XREF		Comments
					from $1/2^+$ in (n,γ) E=thermal.
1687.8+x ^h 10 1689 3	(19/2 ⁻) 11/2 ⁻			K L	E(level): from (t,p). J^{π} : L(t,p)=2 for 7/2 ⁻ target. Configuration: probable $K^{\pi}=11/2^-$ (7/2[514]+ 2 ⁺) γ vibration bandhead
1698.6 ^c 6			G		(2005Bu07).
1702.5 ⁱ 8	$(29/2^{-})$			К	
1706.062 ⁵ 10	(3/2)-	A	EG		J^{π} : M1 1092 γ to 1/2 ⁻ 614; 1089 γ to 7/2 ⁻ 617; the possibly-complex 1331 γ is E2(+M1) to 1/2 ⁻ .
1713.0 ⁸ 13	$(25/2^+)$			K	
1715.935 5	$1/2^+, 3/2^+, 5/2^+$	A	G		J^{n} : EI 466 γ to $3/2^{-}$.
1725.786 <i>12</i> 1731.438 <i>11</i>	3/2 3/2 ⁻	A A	ΕG		J^{-1} : M1 1111 γ to 1/2 o14; M1 937.6 γ to 5/2 788. J^{π} : M1 1356 γ to 1/2 375; M1(+E2) 1030 γ to 5/2 701 and (E2) 295 γ to 7/2 1436 However 1117 γ to 1/2 appears to include an E0 component
1748 5	11/2+,13/2+		gН		XREF: g(1752.8). E(level): from (³ He, α). I ⁷ : L=6 in (³ He, α).
1753.1 ^e 10	$(21/2^+)$			К	
1755.337 17	3/2-	A	Еg		XREF: g(1752.8). J ^{π} : M1 1141 γ to 1/2 ⁻ 614; M1+E2 1054 γ to 5/2 ⁻ 701.
1756.02 8	3/2-	Α			J^{π} : E2(+M1) 1279 γ to 5/2 ⁻ 476; M1 1381 γ to 1/2 ⁻ 375.
1757.72 11 1762.80 4 1771 ^C 3	$(3/2^-, 5/2^+)$ $(3/2)^-$	A A	g Eg	L	J^{π} : 1544 γ to $7/2^{-}$ 214; primary γ from $1/2^{-}$ in (n, γ) E=thermal. J^{π} : M1 1149 γ to $1/2^{-}$ 614; 1549 γ to $7/2^{-}$.
1783.11 <i>12</i>	1/2,3/2,5/2+	A	EG		J ^{π} : primary γ from 1/2 ⁺ in (n, γ) E=thermal. Strongest γ feeds 5/2 ⁻ so J ^{π} probably not 1/2 ⁺ .
1796.5 4	1/2,3/2,5/2+ ^b	Α	g		E(level): from primary γ energy in (n,γ) E=thermal.
1800.52 7	3/2-	Α	g		J ^{π} : M1(+E2) 1324.2 γ to 5/2 ⁻ 476; fed by primary γ in (n, γ) E=thermal.
1811.50 7 1816 <i>4</i>	3/2-	A	G	L	J^{π} : M1(+E2) 1110 γ to 5/2 ⁻ 701; fed by primary γ in (n, γ) E=thermal. E(level): from (t,p) for 7/2 ⁻ target.
1821.29 7 1826.9+x 10 1829 5 1839 ^C 3	$(1/2^-, 3/2)$ $(21/2^+)$	A	E H G	K	J ^{π} : γ to 5/2 ⁻ ; γ to 1/2 ⁻ ; primary γ from 1/2 ⁺ in (n, γ) E=thermal. Configuration=((ν 5/2[512])+(π 7/2[404])+(π 9/2][514])) (2000Mu06). E(level): from (³ He, α).
1846.32 <i>15</i>	(3/2-)	A	Eg		E(level): from (n,γ) E=thermal; 1846.8 4 in (n,γ) E=7.78 eV res. J ^{π} : 1232 γ to 1/2 ⁻ ; 976 γ to 7/2 ⁻ ; primary γ from 1/2 ⁺ in (n,γ) E=thermal.
1851.504 12	3/2+,5/2+	A	g		J ^{π} : M1+E2 848 γ to 5/2 ⁺ 1004; primary γ ray from 1/2 ⁺ in ¹⁷⁸ Hf(n, γ) E=thermal.
1856.0 ^m 18 1859.2 12	$21/2^{-n}$ (21/2 ⁺)			K K	J^{π} : continuation of 1/2[510] band.
1861.238 7	5/2+	A	G		J ^{π} : M1(+E2) 858 γ to 5/2 ⁺ 1004; primary γ ray from 1/2 ⁺ in ¹⁷⁸ Hf(n, γ) E=thermal; E2,M1 740.5 γ to 9/2 ⁺ 1120.
1877 [°] 3 1884 [°] 3	7		G G		
1893.9 5	1/2,3/2,5/2+0	Α	g		E(level): from primary γ energy in (n,γ) E=thermal.
1899.66 <i>24</i> 1904 ^c <i>3</i>	$1/2,3/2,5/2^{+b}$ $(5/2^{-},7/2^{-})$	A	g GH		E(level): from primary γ energy in (n,γ) E=thermal. J ^{π} : L=(3) in (³ He, α).
1913.471 13	3/2-	Α	ΕG		J ^{π} : M1 600 γ to 5/2 ⁻ 1314; primary γ from 1/2 ⁺ in (n, γ) E=thermal.
1915.0 ¹ 18 1928.846 9	$(23/2^{-})$ $1/2^{+}, 3/2^{+}$	A	EG	K	J^{π} : continuation of 7/2[514] band. J^{π} : M1(+E0) 778.4 γ to 1/2 ⁺ 1150.
1941.6 ^j 10	27/2 ⁺ <i>k</i>		F	K	

E(level) [†]	$J^{\pi \ddagger}$		XREF	7	Comments						
1945.864 14	(1/2,3/2) ^b	A			J ^{π} : fed by primary γ from 1/2 ⁺ in (n, γ) E=thermal; 1572 γ to 1/2 ⁻ 375.						
1956.1+x ^h 13	$(21/2^{-})$			K							
1957.58 9 1965 ^c 3	1/2,3/2,5/2+ ^b	A	G		E(level): from primary γ energy in (n,γ) E=thermal.						
1974.1+x ^f 8	$(25/2^+)$			K							
1977 ^c 3 1987 ^c 3			G G								
2007.2 ^e 12 2009 ^c 3	$(23/2^+)$		G	K							
2011 5	$(13/2)^+$		Н		E(level): from (³ He, α). J ^{π} : L(³ He, α)=6 and rotational structure.						
2021 ^c 3 2032 ^c 3			G G								
2033.6 ^{<i>i</i>} 10 2044.1 ^{<i>g</i>} 13	$(31/2^{-})$ $(27/2^{+})$			K K							
2047.0 3	(1/2,3/2) ^a	A	EG		E(level): from E(1672 γ). Other E(level): 2046.8 15 from two-photon cascade data in (n, γ) E=thermal, 2042.5 11 in (n, γ) E=7.78 eV res, 2040 3 in (d,p).						
2052.6 15	1/2,3/2,5/2+ b	A	EG		E(level): from two-photon cascade data in (n,γ) E=thermal. Others: 2050 3 in (d,p), 2050.0 11 from (n,γ) E=7.78 eV res.						
2070.7 15	(1/2,3/2) ^a	A	G		E(level): from two-photon cascade data in (n,γ) E=thermal. E=2070.67 <i>10</i> if 1650 γ is correctly placed.						
2082.8 15	(1/2,3/2) ^{<i>a</i>}	Α	Е		E(level): from two-photon cascade data in (n,γ) E=thermal.						
2088.4 15	$(1/2,3/2)^{a}$	A	g		XREF: g(2089). E(level): from two-photon cascade data in (n,γ) E=thermal.						
2093.40 20			Εg		XREF: g(2089).						
2133.2? <i>16</i> 2146.1 <i>15</i>	$(23/2^+)$ $(1/2,3/2)^a$	A	EG	K	E(level): from two-photon cascade data in (n,γ) E=thermal. Other: E=2142.0						
2150.3 6	1/2 ⁽⁻⁾ ,3/2,5/2 ⁺	A	g		XREF: g(2161). E(level): from two-photon cascade data in (n,γ) E=thermal. J^{π} : 1674 γ to 5/2 ⁻ 476; primary γ from 1/2 ⁺ in (n,γ) E=thermal.						
2168.2 8	1/2,3/2,5/2+ ^b	A	Εg		XREF: g(2161). E(level): from E(primary γ) in (n, γ) E=thermal.						
2183.1 7	1/2,3/2,5/2+ ^b	A	EG		E(level): from (n,γ) E=7.78 eV res. Other: 2183.1 15 from two-photon cascade data in (n,γ) E=thermal						
2214.4 3	(1/2,3/2) ^a	A	g		XREF: $g(2220)$. E(level): from E(1600 γ).						
2228.1 4	1/2,3/2,5/2+ b	A	g		XREF: g(2220). E(level): from E(primary γ) in (n,γ) E=thermal.						
2242.5? ^j 11	$(29/2^+)^{k}$		F								
2243.5+x? ^h 13	$(23/2^{-})$			K							
2249.97 20	(3/2 ⁻)&	A	g		E(level): from E(2035 γ). Other: 2249.6 15 from two-photon cascade data in (n γ) E=thermal						
2254.2 15	1/2 ⁽⁻⁾ ,3/2,5/2 ⁺	A	g		J^{π} : 1736 γ to 5/2 ⁻ 518; primary γ from 1/2 ⁺ in (n, γ) E=thermal. E(level): from two-photon cascade data in (n, γ) E=thermal.						
2281.1 ^e 16 2282 ^c 3	$(25/2^+)$		G	K							
2287.2+x ^f 10	$(27/2^+)$			K							
2297 [°] 3	/		G	j	XREF: j(2310).						
2309.2 15	1/2,3/2,5/2+ ^b	A		j	XREF: j(2310). E(level): from two-photon cascade data in (n,γ) E=thermal.						

E(level) [†]	Jπ‡	T _{1/2}	X	REF	7	Comments
2354 ^C 3				G		
2366.9 15	(1/2 ⁻ ,3/2)		A	J		J ^{π} : γ to 1/2 ⁻ ; γ to 5/2 ⁻ ; primary γ from 1/2 ⁺ in (n, γ) E=thermal. E(level): from two-photon cascade data in (n, γ) E=thermal.
2386.3 ⁱ 11	$(33/2^{-})$				к	
2304.2.15	(33/2)		۸	C	1	F(level); from two photon cascade data in $(n x)$ $F-$ thermal
2394.2 13	1/2**,5/2,5/2		л	G	J	J^{π} : γ to $5/2^-$; primary γ from $1/2^+$ in (n,γ) E=thermal. Excitation in (γ,γ') favors $J^{\pi}=5/2^+$.
2395.1 ^m 20	$25/2^{-n}$				K	J^{π} : continuation of 1/2[510] band.
2396.5 <mark>8</mark> 14	$(29/2^+)$				K	
2415.5 3	(1/2 ⁻ ,3/2)		A	g		J^{π} : γ to $1/2^-$; γ to $5/2^-$; primary γ from $1/2^+$ in (n,γ) E=thermal. E(level): from E(primary γ) in (n,γ) E=thermal.
2425.3 7	$(1/2^{-},3/2)$		Α	g		J^{π} : γ to $1/2^-$; γ to $5/2^-$; primary γ from $1/2^+$ in (n,γ) E=thermal.
2451.31 23	$(3/2^{-})^{\&}$		Α	a		E(level): from E(2237 γ).
2456.7 11	(29/2 ⁻)			5	K	Suggested configuration= $((\nu \ 3/2[512])+(\nu \ 9/2[624])+(\nu \ 1/2[521])+(\pi \ 7/2[404])+(\pi \ 9/2][514]))$ (2000Mu06).
2460.3 15	$(1/2,3/2)^{a}$		Α	g		E(level): from two-photon cascade data in (n,γ) E=thermal.
2475.5 15	$(3/2^{-})^{\&}$		Α			E(level): from two-photon cascade data in (n, γ) E=thermal.
2497 ^c 3	7/2+,9/2+,11/2+			G	J	XREF: J(2480). J ^{π} : M1+E2 excitation mode from $\sigma(\gamma,\gamma')/\sigma(e,e')$.
2509.5 15	$(1/2.3/2)^{a}$		Α			E(level): from two-photon cascade data in (n, γ) E=thermal.
2522.7 15	$(1/2^{-},3/2)$		A	G		E(level): from two-photon cascade data in (n,γ) E=thermal. J ^{π} : γ to 1/2 ⁻ ; γ to 5/2 ⁻ ; primary γ from 1/2 ⁺ in (n,γ) E=thermal.
2549.6 ^d 13	$(33/2^{-})$	30 ns 10			K	$T_{1/2}$: from $\gamma\gamma(t)$ in (⁹ Be. α 2n γ).
2556 ^C 3	$7/2^+ 9/2^+ 11/2^+$			G	1	XREF: I(2565)
2000 0	<i>1/2 ,7/2 ,11/2</i>				2	I^{π} : M1+E2 excitation mode from $\sigma(\gamma \gamma')/\sigma(e e')$
2500#				~		(7,7)
2590	(1/2 - 2/2)			G		
2601.2 3	(1/2, 3/2)		A	g		E(level): from E(primary γ) in (n, γ) E=thermal. J^{π} : γ to $1/2^-$; γ to $5/2^-$; primary γ from $1/2^+$ in (n, γ) E=thermal.
2610.7 5	(1/2,3/2)		A	g		$F: \gamma$ to $1/2$; γ to $5/2$; primary γ from $1/2^{-1}$ in (n,γ) E=thermal. E(level): from (n,γ) E=thermal.
2617.6? ^J 15	$(31/2^+)^{\kappa}$			F		
2638.8 <i>3</i>	$(1/2,3/2)^{a}$		Α			E(level): from E(1918 γ).
2640 15					J	E(level): from (γ, γ') , (e, e') .
2654.13 24	(1/2 ⁻ ,3/2)		A	G		J^{π} : γ to $1/2^-$; γ to $5/2^-$; primary γ from $1/2^+$ in (n,γ) E=thermal. E(level): from E(1866 γ).
2655 [#] 5	$(13/2)^+$			GH		XREF: G(2665).
						E(level): from $({}^{3}\text{He}, \alpha)$.
						I^{π} . I (³ He α) = 6 and rotational structure
2702 0 15	$(1/2^{-} 2/2)$		٨	~		J . L($\Pi(a) = 0$ and rotational structure. I^{π} : a_i to $1/2^{-1}$: a_i to $5/2^{-1}$: primery a_i from $1/2^+$ in (n, a_i) E-thermal
2102.9 15	(1/2, 5/2)		A	g	_	$E(\text{level})$: from two-photon cascade data in (n,γ) E=thermal.
2705 15	7/2*,9/2*,11/2*			g	J	E(level): from (γ, γ') , (e,e'). J ^{π} : M1+E2 excitation mode from $\sigma(\gamma, \gamma')/\sigma(e, e')$.
2727 # C				G		
2743.69 21	$(1/2^{-}, 3/2)$		A	G		E(level): from E(2127 γ). J ^{π} : γ to 1/2 ⁻ ; γ to 5/2 ⁻ ; primary γ from 1/2 ⁺ in (n, γ) E=thermal.
2759.6 ⁱ 12	$(35/2^{-})$				K	
2769.6 ⁸ 15 2788 ^c 3	$(31/2^+)$			G	K	
2857#C	0/2+			Č		VDEE: $I(2950)$
2031	2			G	L	JACEF. J(2030). J^{π} : E0 excitation mode, based on level's excitation in (e,e') but not in (γ, γ') .
2808 0d 15	$(35/2^{-})$				v	// /·</td
2090.0 13	(33/2)				Л	

¹⁷⁹Hf Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF		F	Comments			
2905.2 <i>15</i> 2921 ^c 3 2950 ^c 3	(1/2,3/2) ^a		A	G G	j j	E(level): from two-photon cascade data in (n,γ) E=thermal.			
2969 ^{#C}				G					
2983.3 15	$1/2^{(-)}, 3/2, 5/2^+$		Α	G		J^{π} : γ to 5/2 ⁻ ; primary γ from 1/2 ⁺ in (n, γ) E=thermal. E(level): from two-photon cascade data in (n, γ) E=thermal.			
3030 15					J	E(level): from (γ, γ') , (e,e').			
3076.2 <i>3</i>	$(1/2^{-}, 3/2)$		A			J^{π} : γ to $1/2^-$; γ to $5/2^-$; primary γ from $1/2^+$ in (n,γ) E=thermal. E(level): from E(primary γ) in (n,γ) E=thermal.			
3095 15	9/2+				J	E(level): from (γ, γ') , (e,e'). J ^{π} : E0 excitation mode, based on level's excitation in (e,e') but not in (γ, γ') .			
3148.8 5	$(1/2^{-},3/2)^{a}$		Α			J^{π} : γ to $1/2^-$; γ to $5/2^-$; primary γ from $1/2^+$ in (n,γ) E=thermal. E(level): from E(2445 γ).			
3151.5? ⁱ 13	$(37/2^{-})$				K				
3155 15	7/2+,9/2+,11/2+				J	E(level): from (γ, γ') , (e,e'). J ^{π} : M1+E2 excitation mode from $\sigma(\gamma, \gamma')/\sigma(e,e')$.			
3161.6? <mark>8</mark> 16	$(33/2^+)$				K				
3177.9 <i>3</i>	1/2 ⁽⁻⁾ ,3/2,5/2 ⁺		A			J^{π} : γ to 5/2 ⁻ ; primary γ from 1/2 ⁺ in (n, γ) E=thermal. E(level): from E(primary γ). Other: 3179.6 <i>15</i> from two-photon cascade data in (n γ) E=thermal			
3240 15	7/2+,9/2+,11/2+				J	E(level): from (γ, γ') , (e,e'). J^{π} : M1+E2 excitation mode from $\sigma(\gamma, \gamma')/\sigma(e,e')$.			
3268.2 <mark>0</mark> 15	$(37/2^{-})$				к				
3345.4 3	$1/2^{(-)}, 3/2, 5/2^+$		A		K	J^{π} : γ to 5/2 ⁻ ; primary γ from 1/2 ⁺ in (n, γ) E=thermal.			
3347 2 4	$(1/2 \ 3/2)^{a}$		Δ			E(level): from E(primary γ) in (n γ) E=thermal			
3360 15	$7/2^+, 9/2^+, 11/2^+$				J	E(level): from (γ, γ') , (e,e'). π : M1+E2 excitation mode from $\sigma(\gamma, \gamma')/\sigma(e,e')$.			
2272 (91 19	(25/2+)k			-		\mathbf{y} . With \mathbf{z} excitation mode from $\mathbf{v}(\mathbf{y},\mathbf{y})/\mathbf{v}(\mathbf{c},\mathbf{c})$.			
2400 5 15	$(33/2^{+})^{a}$			г		E(loval), from two photon coccords data in (n, t) E-thermal			
3439.2 <i>18</i>	$(1/2, 3/2)^{*}$ $(39/2^{-})$	12 ns 6	A		K	E(level): from two-photon cascade data in (n, γ) E=thermal. Suggested configuration=((ν 7/2[514])+(ν 9/2[624])+(ν 7/2[503])+(π 7/2[404])+ (π 9/2][514])) (2000Mu06).			
3490 15					J	T _{1/2} : from $\gamma\gamma(t)$ in (⁹ Be, α 2n γ). E(level): from (γ,γ'), (e,e').			
3659.1? ^d 17	$(39/2^{-})$				K				
3775.2 21	(43/2 ⁺)	15 μs 5			K	Suggested configuration=((ν 7/2[514])+(ν 9/2[624])+(ν 11/2[615])+(π 7/2[404]) +(π 9/2][514])) (2000Mu06).			
1201 721 20	(30/2+)k			F		$1_{1/2}$. from beam- $\gamma(t)$ in ($De, \alpha 2 m \gamma$).			
7204.75 20	(39/2)			r					

[†] From least-squares fit to $E\gamma$, assigning $\Delta E=1$ keV to data for which authors did not state uncertainty and excluding uncertain or multiply-placed transitions, except as noted.

[‡] Assignments given without comment are based on γ multipolarities, γ decay patterns, g-factor analysis, calculated bandhead energies and observed band structure in 176 Yb(9 Be, $\alpha 2n\gamma$).

[#] ΔE >3 keV. [@] ΔE >10 keV.

& Fed by primary γ from $1/2^+$ in (n,γ) E=thermal; γ to $1/2^-$ and to $7/2^-$.

^{*a*} Fed by primary γ from $1/2^+$ in (n,γ) E=thermal; γ to $1/2^-$.

^b Fed by primary γ from $1/2^+$ in (n,γ) E=thermal. ^c From ¹⁷⁸Hf(d,p), ¹⁸⁰Hf(d,t). ΔE includes a systematic uncertainty of 0.5 keV (for E<1700) or 3 keV (for 1700<E<2050)

Continued on next page (footnotes at end of table)

¹⁷⁹Hf Levels (continued)

combined in quadrature with the relevant statistical ΔE . If no uncertainty is stated, ΔE >3 keV.

- ^d Band(A): $K^{\pi} = (33/2^{-})$ band (2000Mu06). Configuration= $((\nu 7/2[514]) + (\nu 9/2[624]) + (\nu 1/2[510]) + (\pi 7/2[404]) + (\pi 9/2][514]))$ (2000Mu06); supported by $g_{K}(exp)=0.46 \ 4 \ cf. \ 0.45 \ from Nilsson model.$
- ^{*e*} Band(B): $K^{\pi} = 17/2^+$ band (2000Mu06). Configuration=(($\nu 7/2[514]$)+($\nu 9/2[624]$)+($\nu 1/2][510]$)) (2000Mu06).
- ^{*f*} Band(C): $K^{\pi} = (21/2^+)$ band (2000Mu06). Configuration=(($\nu 9/2[624]$)+($\pi 7/2[404]$)+($\pi 5/2][402]$)) (2000Mu06); supported by $g_{K}(exp)=0.54 \ 5 \ cf. \ 0.48 \ from \ Nilsson \ model.$
- ^g Band(D): $K^{\pi} = 23/2^+$ band (2000Mu06). Configuration=(($\nu 7/2[514]$)+($\pi 7/2[404]$)+($\pi 9/2][514]$)) (2000Mu06); supported by $g_{K}(exp)=0.86$ 20 cf. 0.78 from Nilsson model.
- ^{*h*} Band(E): $K^{\pi} = (19/2^{-})$ band (2000Mu06). Configuration=(($\nu 7/2[514]$)+($\pi 7/2[404]$)+($\pi 5/2][402]$)) (2000Mu06).
- ^{*i*} Band(F): $K^{\pi}=25/2^{-}$ band (2000Mu06). Configuration=(($\nu 9/2[624]$)+($\pi 7/2[404]$)+($\pi 9/2][514]$)) (2000Mu06); supported by $g_{K}(exp)=0.60$ 7 cf. 0.55 from Nilsson model.
- ^{*j*} Band(G): 9/2[624] band. g.s. band. Level spacings perturbed by Coriolis mixing (1981Th05). A=11.6, B=3.1. Configuration supported by $g_{K}(exp)=-0.224$ cf. -0.245 from Nilsson model.
- ^{*k*} Definite J^{π} assigned to J \leq 27/2 members of 9/2[624] band based on observed band structure combined with independently established $J^{\pi}=9/2^+$ and 11/2⁺ for the g.s. and 123 levels and mult=M1+E2 for the intraband 123 γ connecting them. The existence of J \geq 29/2 levels is based on transitions whose placement is uncertain.
- ^{*l*} Band(H): 7/2[514] band. Rotational parameters: A=13.8, B=-3.6. Configuration supported by $g_K(exp)=0.31$ 4 cf. 0.28 from Nilsson model.
- ^{*m*} Band(I): 1/2[510] band. rotational parameters: A=13.2, B=-5.9, a=+0.16, B_{2K}=-3.9.
- ^{*n*} Definite J^{π} assigned to J \leq 25/2 members of 1/2[510] band based on observed band structure combined with independently established $J^{\pi}=1/2^{-1}$ for 375 level and mult=M1+E2 for intraband 46 γ .
- ^{*o*} Band(J): 5/2[512] band. Rotational parameters: A=14.1, B=-4.2. Configuration supported by $g_{K}(exp)=-0.27$ 12 cf. -0.38 from Nilsson model.
- ^{*p*} Definite J^{π} assigned to J≤15/2 members of 5/2[512] band based on observed band structure combined with independently established J^{π} =5/2⁻ for 518 level and mult=M1+E2 for intraband 98 γ .
- ^q Band(K): 1/2[521] band. Rotational parameters: A=13.1, a=+0.67.
- ^{*r*} Definite J^{π} assigned to J≤9/2 members of 1/2[521] band based on observed band structure combined with independently established $J^{\pi}=3/2^{-}$ for 680 level and mult=M1 for intraband 148 γ .
- ^s Band(L): 3/2[512] band.
- ^{*t*} Definite J^{π} assigned to J≤11/2 members of 3/2[512] band based on observed band structure combined with independently established $J^{\pi}=3/2^{-1}$ for 721 level and mult=M1 for intraband 147 γ .
- u Band(M): K^{π}=5/2⁺ K-2 γ -vibration band. 9/2⁺ g.s. γ vibration.
- ^v Band(N): (v 5/2[523])? band (2000Mu06). Deexcites to 7/2[514] band.
- ^w Band(O): 7/2[503] band. Rotational parameters: A=10.5, B=12.3.
- ^x Band(P): $K^{\pi}=3/2^+$ (1/2[521]+1⁻) band. Octupole vibration (1310(1⁻) in ¹⁷⁸Hf) coupled to 1/2[521].
- ^y Band(Q): 7/2[633] band.
- ^{*z*} Band(R): $K^{\pi} = 9/2^+$ [9/2[624]+0⁺] g.s. β -vibrational band. β vibration (1199(0⁺) in ¹⁷⁸Hf) coupled to 9/2[624].
- ¹ Band(S): $K^{\pi}=1/2^+$ (1/2[510]-1⁻) band. Octupole vibration (1310(1⁻) in ¹⁷⁸Hf) coupled to 1/2[510]. See 1985Ri09 for a discussion of unusual decay between octupole and quadrupole vibrations built on different single-particle states. Rotational parameters: A=10.9, a=+0.09.
- ² Band(T): $K^{\pi}=3/2^{-}$ [7/2[514]-2⁺] γ -vibrational band. Quadrupole vibration (1175(2⁺) in ¹⁷⁸Hf) coupled to 7/2[514]. Rotational parameters: A=12.6, B=25.9.
- ³ Band(U): 3/2[521] band.
- ⁴ Band(V): 3/2[501] band.
- ⁵ Band(W): 1/2[501] band.

$\gamma(^{179}{\rm Hf})$

E,RI,M,MR From ¹⁷⁸Hf(n, γ) E=thermal, unless otherwise specified. Multipolarity and δ are from α (K)exp and/or subshell ratios.

11

E _i (level)	\mathbf{J}_i^π	E_{γ}	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	δ	α^{c}	Comments
122.7904	11/2+	122.793 3	100	0.0	9/2+	M1+E2	-0.27 3	2.18 4	B(M1)(W.u.)=0.094 8; B(E2)(W.u.)=245 14 δ : from $\gamma(\theta)$ in Coulomb excitation. Others: 0.309 15 from B(E2) and T _{1/2} ; 0.70 +12–11 from α (K)exp in (n, γ) E=thermal; 0.22 +20–22 from α (L)exp in Hf IT decay (25.05 d); 0.44 6 from α (K)exp in Coulomb excitation; 0.44 9 from ce(K)/ce(L) in Coulomb excitation. B(E2)(W.u.): from measured B(E2)=1.76 10 for 122 level.
214.3395	7/2-	214.335 3	100	0.0	9/2+	E1		0.063 4	B(E1)(W.u.)=1.110×10 ⁻⁵ 25 α : experimental value from (n, γ). Anomalous E1 transition. α (E1 theory)=0.0494.
268.92	13/2+	146.15 7	100 4	122.7904	11/2+	M1+E2	-0.39 4	1.291 22	B(M1)(W.u.)=0.106 17; B(E2)(W.u.)=320 80 E_{γ} ,Mult.: from ¹⁷⁹ Hf IT decay (25.05 d). I_{γ} : from (⁹ Be, α 2n γ). δ : weighted average of -0.41 5 from $\gamma(\theta)$ in Coulomb excitation and -0.33 8 from $\gamma(\theta)$ in Hf IT decay (25.05 d). Other: 0.26 +12-26 from α (K)exp in Coulomb excitation; inconsistent α (K)exp in ¹⁷⁹ Hf IT decay (25.05 d) may result from contaminated ce line. δ <0.38 from RUL.
		268.85 14	39.4 4	0.0	9/2+	E2		0.1107	B(E2)(W.u.)=49 6 E_{γ} ,Mult.: from ¹⁷⁹ Hf IT decay (25.05 d). I_{γ} : from (⁹ Be, α 2n γ). From B(E2) \uparrow =0.41 5 in Coulomb excitation.
337.7178	9/2-	123.3790 <i>20</i> 214.930 <i>3</i> 337.713 <i>5</i>	100 <i>4</i> 78 <i>4</i> 21.2 9	214.3395 122.7904 0.0	7/2 ⁻ 11/2 ⁺ 9/2 ⁺	E2 [E1] E1		1.582 0.0491 0.01607	
375.0352	1/2-	160.696 2	100	214.3395	7/2-	M3		34.1	B(M3)(W.u.)=0.0364 9 I_{γ} : From ¹⁷⁹ Hf IT decay (18.67 s).
		≈375	≈0.2	0.0	9/2+	[M4]		3.57	B(M4)(W.u.)≈0.14 E_{γ} , I_{γ} : From ¹⁷⁹ Hf IT decay (18.67 s).
420.8943	3/2-	45.8610 <i>10</i>	100	375.0352	$1/2^{-}$	M1+E2	0.117 +22-26	7.9 6	
438.68	15/2+	169.77 [#] 9 315.88 [#] 11	96 <i>4</i> 100	268.92 122.7904	13/2 ⁺ 11/2 ⁺	M1+E2 E2	-0.33 5	0.852 <i>17</i> 0.0679	I_{γ} ,Mult., δ : from ¹⁷⁹ Hf IT decay (25.05 d). I_{γ} ,Mult.: from ¹⁷⁹ Hf IT decay (25.05 d).
476.3341	5/2-	55.4420 <i>10</i> 101.2980 <i>10</i>	100 <i>I</i> 90 5	420.8943 375.0352	3/2 ⁻ 1/2 ⁻	M1 E2		3.74 3.35	,, , , , , , , , , , , , , , , , , , ,

$\gamma(^{179}\text{Hf})$ (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	δ	α^{c}	Comments
476.3341	$5/2^{-}$	262.02 3	0.22 6	214.3395	$7/2^{-}$				
487.709	$(11/2^{-})$	150.019 15	21.5 15	337.7178	9/2-				I_{α} : from (⁹ Be. α 2n γ): 30 6 from (n. γ) E=thermal.
	(/-)	273.368 4	100 5	214.3395	$7/2^{-}$				
		487.704 11	52.17	0.0	$9/2^{+}$				Not reported in $({}^{9}\text{Be},\alpha 2n\gamma)$.
518.3279	$5/2^{-}$	41.9960 10	0.26 6	476.3341	5/2-	M1(+E2)	0.13 +6-11	11 3	B(M1)(W.u.) > 0.0023
	- 1	97.4350 20	0.89 4	420.8943	3/2-	M1+E2	0.28 + 10 - 14	4.29 7	B(M1)(W.u.)>0.00074; B(E2)(W.u.)>0.93
		143.301 9	0.11 3	375.0352	$1/2^{-}$	(E2)		0.914	B(E2)(W.u.)>0.68
									Mult.: $\alpha(K)$ exp in (n, γ) E=thermal consistent with
									E1 or E2; $\Delta \pi$ =no from level scheme.
		180.613 2	0.79 4	337.7178	9/2-	E2		0.406	B(E2)(W.u.)>1.6
		303.977 4	100.0 22	214.3395	7/2-	M1+E2	0.62 + 7 - 6	0.151 5	B(M1)(W.u.)>0.0021; B(E2)(W.u.)>3.4
582.230	$7/2^{-}$	105.899 <i>3</i>	100 2	476.3341	$5/2^{-}$	M1		3.40	
		161.3390 20	19.0 8	420.8943	3/2-	(E2)		0.600	
		367.891 17	0.55 9	214.3395	7/2-				
614.204	$1/2^{-}$	137.873 2	0.72 4	476.3341	5/2-	E2	0.50 (1.051	B(E2)(W.u.) = 1.55
		193.310 2	100.0 21	420.8943	3/2-	MI+E2	0.59 4	0.543 11	B(M1)(W.u.)=0.0025 8; B(E2)(W.u.)=10.4
(1(75()	7/0-	239.165 3	16.4 12	375.0352	1/2	MI M1 · F2	0.25 4	0.344	$B(M1)(W.u.)=0.00030\ 10$
616./562	1/2	98.433 2	100 1	518.3279	5/2 5/2-	M1+E2	0.354	4.14	
		140.4200 20	10.8 7 2.05.24	470.3341	3/2	MIT+E2	0.40 + 13 - 19	1.43 0	
		270.020 4	2.05 24	420.0943	0/2-	M1 + E2	0.60 + 12 - 11	0 195 10	1(270, 0, 1(0, 0) - 122, 17, 100, 8 in (9D2, 0, 2n, 0)
		279.029 4	13.90	21/ 3305	9/2 7/2-	M1 + E2 M1 + E2	0.09 + 12 - 11 1 28 8	0.185 10 0.0534 18	$I(2/9\gamma)$: $I(98\gamma) = 155 77.100 8 III (* Be, d2II\gamma).$
		616 768 9	22 9 19	0.0	$9/2^+$	W11+L2	1.20 0	0.0334 10	
621.20	17/2+	102.60^{\pm} 11	54.5	128 68	15/2+	M1 + E2	0.26.6	0.607.12	I Mult δ_{1} from 179 Hf IT decay (25.05 d)
031.30	1//2	192.02 11	54 5	438.08	13/2	MIT+E2	-0.20 0	0.007 15	Γ_{γ} , where Γ_{γ} , Γ_{γ} and Γ_{γ
		a (a ao <mark>#</mark> ta			10/0+				Other 1γ : 78 4 III (* $Be, \alpha 2 II\gamma$).
((1))	(10/0-)	362.39" 13	100.0 22	268.92	13/2*	E2		0.0457	I_{γ} ,Mult.: from ¹⁷⁹ Hf IT decay (25.05 d).
664.3	$(13/2^{-})$	176.34	0.74 7	487.709	$(11/2^{-})$				
(70.51)	2/2-	326.8	100 3	337.7178	9/2	M		1.020	
079.510	5/2	101.191 2	100 3	518.5279	5/2 5/2-		0.70.6	1.030	
		205.162 5	10.7 5	470.5541	3/2	M1 + E2 M1 + E2	0.70 0	0.432 12 0.244 14	
		201 465 7	737	420.8943	$\frac{3}{2}$	$M1 \pm L2$	0.55 15	0.244 14	
681.036	$0/2^{-}$	08 808 12	15 1	582 230	7/2	1011		0.1705	Other In: 5.3.26 in $({}^{9}\text{Re}\alpha^{2}n\alpha)$
001.050	9/2	204 696 3	100 0 22	476 3341	5/2-	F2		0.266	Other Ty: 5.5 20 m ($\mathbf{D}\mathbf{c}, \alpha 2 \mathbf{n} \mathbf{y}$).
701 0552	$5/2^{-}$	84 2970 10	13.2.8	616 7562	7/2-	M1+E2	263	6.93	
101100002	0/2	86.857 5	5.5 7	614.204	$1/2^{-}$	E2	2.0 0	6.18	
		118.8260 10	100 3	582.230	$7/2^{-}$	 M1+E2	0.36 8	2.37 5	
		182.7350 20	25.2 5	518.3279	5/2-	M1+E2	0.67 6	0.621 16	
		224.715 3	6.5 7	476.3341	5/2-	M1(+E0)			
		280.154 4	4.82 15	420.8943	3/2-	M1+E2	0.5 +3-4	0.198 25	
		326.010 14	35.6 15	375.0352	$1/2^{-}$	E2		0.0619	

L

From ENSDF

$\gamma(^{179}\text{Hf})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	δ	α^{c}	Comments
701.0552 720.613	5/2 ⁻ 3/2 ⁻	486.735 <i>14</i> 106.409 <i>1</i> 202.283 <i>3</i> 244.278 <i>8</i> 299.716 <i>4</i> 345.575 <i>5</i>	12.6 11 2.64 15 100 2 10.6 10 38.7 8 9.60 10	214.3395 614.204 518.3279 476.3341 420.8943 375.0352	7/2 ⁻ 1/2 ⁻ 5/2 ⁻ 5/2 ⁻ 3/2 ⁻ 1/2 ⁻	M1 M1(+E2) M1+E2 M1(+E2) M1+E2 M1+E2	≤ 0.37 $0.57 \ 4$ ≤ 0.7 $1.53 \ 6$ $0.64 \ 4$	0.0516 3.32 6 0.480 10 0.30 3 0.1114 24 0.1054 25	B(M1)(W.u.)>0.00060 B(M1)(W.u.)>0.0028; B(E2)(W.u.)>8.7 B(M1)(W.u.)>0.00014 B(M1)(W.u.)>0.00013; B(E2)(W.u.)>1.5 B(M1)(W.u.)>5.0×10 ⁻⁵ ; B(E2)(W.u.)>0.070 Other I γ : 7.1 14 in (n, γ) E=7.78 eV res.
742.710	9/2-	506.299 ^{<i>f</i>} 20 125.957 <i>I</i> 224.367 <i>4</i> 619.90 <i>5</i>	4.6 ^f 15 100 9 23.4 19 12 6	214.3395 616.7562 518.3279 122.7904	7/2 ⁻ 7/2 ⁻ 5/2 ⁻ 11/2 ⁺	(E2) M1+E2	0.67 +20-19	0.0187 1.88 8	B(E2)(W.u.)>0.019
788.185	5/2-	87.127 <i>13</i> 108.678 <i>4</i> 171.432 2 173.977 <i>3</i> 205.950 <i>3</i> 269.857 <i>4</i>	2.6 <i>13</i> 3.6 6 100 <i>1</i> 5.0 <i>3</i> 53.3 <i>10</i> 94 <i>7</i>	701.0552 679.516 616.7562 614.204 582.230 518.3279	5/2 ⁻ 3/2 ⁻ 7/2 ⁻ 1/2 ⁻ 7/2 ⁻ 5/2 ⁻	M1+E2 E2 M1+E2 M1+E0	0.67 <i>4</i> 0.84 <i>6</i>	0.748 <i>15</i> 0.461 0.412 <i>11</i>	Other I(270 γ):I(171 γ)=194 31:100 19 in
		311.844 <i>4</i> 413.132 7 450.47 <i>3</i> 573.825 22	21.4 9 43.6 9 2.9 3 41.1 24	476.3341 375.0352 337.7178 214.3395	5/2 ⁻ 1/2 ⁻ 9/2 ⁻ 7/2 ⁻	M1(+E2) E2 M1	≤0.43	0.160 <i>8</i> 0.0318 0.0337	('Be, $\alpha 2n\gamma$). Other I(574 γ):I(171 γ)=14 5:100 36 in (n, γ) E=7.78 eV res.
842.9 848.37	11/2 ⁻ 19/2 ⁺	260.7 ^{<i>a</i>} 217.07 [#] 13	100 42 <i>3</i>	582.230 631.30	7/2 ⁻ 17/2 ⁺	M1+E2	-0.37 3	0.421 8	I_{γ} ,Mult., δ : from ¹⁷⁹ Hf IT decay (25.05 d). Other Ly: 53 3 from (⁹ Be α 2ny)
849.200	7/2-	409.68 [#] 15 106.492 1 148.148 4 168.162 2	100.0 25 12.4 15 6.8 15 13.8 7	438.68 742.710 701.0552 681.036	15/2 ⁺ 9/2 ⁻ 5/2 ⁻ 9/2 ⁻	E2 M1+E2 M1	1.0 +4-3	0.0325 3.05 <i>11</i> 1.306	I_{γ} ,Mult.: from ¹⁷⁹ Hf IT decay (25.05 d).
		169.675 4 232.439 3 266.974 4 330.856 9 372 853 5	15.0 9 47.6 18 35.9 18 10.6 5 71.4 7	679.516 616.7562 582.230 518.3279 476.3341	3/2 ⁻ 7/2 ⁻ 7/2 ⁻ 5/2 ⁻ 5/2 ⁻	E2 M1+E2 M1(+E2)	1.04 +14-12	0.503 0.270 <i>13</i> 0.18 <i>7</i>	
		428.292 6	12.9 15	420.8943	3/2 ⁻ 3/2 ⁻	(E2)		0.0289	$\delta(M1,E2)>1.3$ from $\alpha(K)exp=0.029$ 7 in (n,γ) E=thermal.
865.9 870.222	(15/2 ⁻) 7/2 ⁻	034.94 <i>4</i> 378.2 ^{<i>a</i>} 532.49 <i>4</i>	100 <i>12</i> 100 7.5 <i>5</i>	214.3395 487.709 337.7178	//2 (11/2 ⁻) 9/2 ⁻	M1+E2 (E2) M1		0.018 8 0.0405 0.0409	Mult.: Q intraband γ from $\gamma(\theta)$ in (⁹ Be, α 2n γ). Other I γ : 41 9 in (⁹ Be, α 2n γ).

13

$\gamma(^{179}\text{Hf})$ (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult.	δ	α^{c}	Comments
870.222	7/2-	655.888 20	45.6 19	214.3395	$7/2^{-}$	M1(+E2)		0.017 7	
		870.243 13	100.0 20	0.0	9/2+	E1		0.00212 3	
896.7	$11/2^{-}$	153.5 ^a	88 <mark>a</mark> 13	742.710	9/2-				
		280.1 ^{<i>a</i>}	100 ^a 13	616.7562	$7/2^{-}$				
912.0	9/2-	210.9 ^a	100	701.0552	$5/2^{-}$				
935.643	7/2-	147.458 <i>3</i>	33 5	788.185	5/2-	M1		1.324	
		192.933 <i>3</i>	43 4	742.710	9/2-				
		215 ^g	<10	720.613	3/2-				E_{γ},I_{γ} : transition reported in (⁹ Be, α 2n γ) only; there, I(215 γ):I(319 γ)=0.1 <i>1</i> :2.1 6.
		318.887 4	100.0 24	616.7562	7/2-	M1+E2	0.71 +20-18	0.127 11	
		353.425 6	76 <i>4</i>	582.230	$7/2^{-}$	M1		0.1197	
		459.287 9	30.1 24	476.3341	5/2-	M1(+E2)		0.042 18	
985.7	$13/2^{-}$	304.7 ^{<i>a</i>}	100	681.036	9/2-				
1003.650	5/2+	386.898 9	0.54 4	616.7562	7/2-				
		485.323 7	2.7 6	518.3279	5/2-				
		789.1888 20	2.05 13	214.3395	$7/2^{-}$	(E1)		0.00256 4	
1052 545	7.0-	1003.690 23	100.6	0.0	9/2+	E2	11 0 (0.00406 6	
10/3.565	1/2	735.83 5	26.8 14	337.7178	9/2	MI+E2	1.1 +9-4	0.012 3	Other $I\gamma$: $I/3$ in β decay.
10747	(5/2-)	859.254 10	100 2	214.3395	1/2	MI+E2	0.43 + 11 - 13	0.0111 5	
10/4./	(5/2)	860.4^{a}	100	214.3395	1/2				
10/0.0	13/2	$1/9.5^{-1}$	85° 17 100 0 17	890.7	11/2 0/2-				
1078 240	$(7/2)^+$	334.2 ^m	2 71 22	742.710	9/2 2/2-				
10/6.349	(1/2)	863 08 15	2.71 22	720.015	3/2 7/2-				
		1078 37 8	100 4	0.0	$9/2^+$	$F_2(+M_1)$		0.0052.17	
1094 72	21/2+	$226.26^{\#}$ 14	27.7.8	0.0	10/2+	$L_2(+M1)$	0.20.2	0.240 6	L St from ¹⁷⁹ Uf IT desay (25.05 d)
1064.75	21/2	230.30 14	21.1 0	040.37	19/2	W11+E2	-0.50 5	0.340 0	Other I γ : 33 3 from (⁹ Be, α 2n γ).
		453.43 [#] 17	100 4	631.30	$17/2^{+}$	E2		0.0249	
1092.7	$(17/2^{-})$	428.4 ^{<i>a</i>}	100	664.3	$(13/2^{-})$				
1105.74	$25/2^{-}$	21.01 [#] 12	0.254 13	1084.73	$21/2^{+}$	M2		$1.15 \times 10^4 4$	$B(M2)(W.u.)=9.1\times10^{-12}$ 10
									I _γ : from I(γ+ce)=2917 104 from ¹⁷⁹ Hf IT decay (25.05 d) and α=11500. Mult.: from ¹⁷⁹ Hf IT decay (25.05 d).
		257 37# 15	100.17	848 37	$19/2^{+}$	F3		0 669	$B(F3)(Wu) = 1.28 \times 10^{-10} 23$
			100 17	010.57	1)/2	15		0.009	I_{γ} ,Mult.: from ¹⁷⁹ Hf IT decay (25.05 d).
1105.92	$(7/2^+)$	891.5 [‡] 3	8.1 20	214.3395	7/2-				I_{γ} : from β^- decay.
		983.17 [‡] 20	33 6	122.7904	$11/2^{+}$				I_{γ} : from β^- decay.
		1105.92 [‡] 10	100 10	0.0	$9/2^{+}$				I_{γ} : from β^- decay.
1120.816	9/2+	906.44 6	11.2 9	214.3395	7/2-				, <u> </u>

 $^{179}_{72}\mathrm{Hf}_{107}$ -14

From ENSDF

$\gamma(^{179}\text{Hf})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	δ	α^{c}	Comments
1120.816	9/2+	998.06 10	25 4	122.7904 11/2+	M1+E2	0.9 +13-6	0.0065 17	
1150.411	1/2+	1120.833 24 429.800 6 470.891 7	$ \begin{array}{r} 100 \\ 14.4 12 \\ 43 4 \\ 2 1 2 \end{array} $	$\begin{array}{rrrr} 0.0 & 9/2^+ \\ 720.613 & 3/2^- \\ 679.516 & 3/2^- \\ (14.204 & 1/2^- \end{array}$	M1+E0 (E1) E1		0.00919 <i>13</i> 0.00749 <i>11</i>	
1168.95	(9/2+)	729.517 <i>10</i> 775.35 8 831.24 <i>3</i>	2.1 5 100 <i>3</i> 1.85 25 67.0 <i>26</i>	614.204 1/2 420.8943 3/2 ⁻ 375.0352 1/2 ⁻ 337.7178 9/2 ⁻	E1		0.00299 5	
		953.9+ 3	35 11	214.3395 7/2-				I_{γ} : from β^{-} decay. γ absent in (n,γ) E=thermal.
		1046.16 ^f 6	100 ^{<i>f</i>} 21	122.7904 11/2+				I _γ : from β^- decay. Mult=M1+E2 for doublet in which 70% of Iγ arises from this transition.
		1168.4 [‡] <i>3</i>	36 11	0.0 9/2+				I_{γ} : from β^{-} decay. γ absent in (n,γ) E=thermal.
1185.848	3/2+	182.178 <i>11</i> 397.67 <i>3</i> 465.222 <i>6</i>	1.19 <i>16</i> 0.70 <i>13</i> 18.8 <i>10</i>	1003.650 5/2 ⁺ 788.185 5/2 ⁻ 720.613 3/2 ⁻	(E1)		0.00769 11	
		484.799 15	17.8 <i>18</i>	701.0552 5/2-	(E1)		0.00702 10	Mult.: $\alpha(K)\exp{<\alpha(K)(E2)}$ for transition with possible ce contamination in (n,γ) E=thermal; $\Delta\pi$ =yes from level scheme.
		506.299 ^f 20 571.653 14 709.527 18		679.516 3/2 ⁻ 614.204 1/2 ⁻ 476.3341 5/2 ⁻	E1+M2	0.10 3	0.0059 7	
		764.968 11	91 3	420.8943 3/2-	E1		0.00272 4	
1196.2	$15/2^{-}$	353.3 ^a	100.0 22	842.9 11/2 ⁻	EI		0.00243 4	
1198.4 1199.52	(7/2) $(7/2^+)$	680.2 <i>5</i>	73	$518.3279 5/2^{-10}$				E_{γ} , I_{γ} : from ¹⁷⁹ Lu β^- decay.
		1076.9 2	100 20	122.7904 11/2+				E_{γ}, I_{γ} : from ¹⁷⁹ Lu β^{-} decay.
1235.440	5/2+	1199.5 2 231.809 6 386.244 6 514.827 10 534.394 12 555 888 11	60 <i>13</i> 3.66 25 17.3 <i>3</i> 9.1 26 6.2 <i>3</i> 6.5 6	$\begin{array}{cccc} 0.0 & 9/2^{+} \\ 1003.650 & 5/2^{+} \\ 849.200 & 7/2^{-} \\ 720.613 & 3/2^{-} \\ 701.0552 & 5/2^{-} \\ 679.516 & 3/2^{-} \end{array}$	(E1)		0.01173	E_{γ}, I_{γ} : from ¹⁷⁵ Lu β^- decay.
1249.552	3/2-	653.190 <i>13</i> 759.060 <i>14</i> 548.508 <i>15</i> 570.036 <i>8</i>	100 4 22.9 7 4.7 4 9.5 6	582.230 7/2 ⁻ 476.3341 5/2 ⁻ 701.0552 5/2 ⁻ 679.516 3/2 ⁻	E1 (E1) M1 M1		0.00374 <i>6</i> 0.00277 <i>4</i> 0.0379 0.0343	

15

 $^{179}_{72}\mathrm{Hf}_{107}$ -15

$\gamma(^{179}\text{Hf})$ (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	δ	α^{c}	Comments
1249.552	3/2-	635.26 <i>4</i> 731.22 ^{<i>e</i>} <i>3</i> 773.15 <i>5</i>	29.4 <i>14</i> 15.6 ^e 8 5.6 6	614.204 518.3279 476.3341	1/2 ⁻ 5/2 ⁻ 5/2 ⁻ 7/2 ⁻	M1(+E2) E2+M1	0.9 +13-7	0.018 8	
1255.8 1269.445	11/2 ⁻ 3/2 ⁻	1035.197 15 320.2 ^{<i>a</i>} 399.17 4	100 6 100 1.79 <i>14</i>	214.3395 935.643 870.222	7/2 7/2 ⁻ 7/2 ⁻	E2		0.00381.0	
		548.858 21 568.382 8 589.923 8	26.1 <i>18</i> 10.6 <i>9</i> 29.2 <i>20</i>	720.613 701.0552 679.516	3/2 5/2 ⁻ 3/2 ⁻	M1+E2 M1 M1+E2	0.55 23	0.027 12 0.0345 0.027 3	
		655.256 <i>19</i> 751.14 <i>3</i> 1055.06 <i>5</i>	92 4 10.8 5 100 6	614.204 518.3279 214.3395	1/2 ⁻ 5/2 ⁻ 7/2 ⁻	M1+E2 M1 (E2)	0.70 +10-9	0.0194 9 0.01699 0.00367 6	
1283.7	15/2-	207.2 ^a 387 ^a	$ \begin{array}{r} 100^{a} & 60 \\ 60^{a} & 20 \end{array} $	1076.6 896.7	13/2 ⁻ 11/2 ⁻				
1296.64	(3/2 ⁻ ,5/2,7/2 ⁻)	$596.0^{\&} 2$	34 7 22 5	701.0552	$5/2^{-}$				
		$1082.4^{\&} 2$	23 3 100 20	214.3395	3/2 7/2 ⁻				
1309.8	$(17/2^+)$	678.4 ^a 871.1 ^a	2.3^{a} 12 53^{a} 5	631.30 438.68	$17/2^+$ $15/2^+$	[M1] [M1]		0.0220	B(M1)(W.u.)=9.E-7.6 $B(M1)(W.u.)=1.0\times10^{-5}.4$
1212 500	5/2-	1041.0 ^{<i>a</i>}	100^{a} 7	268.92	$\frac{13/2^{+}}{13/2^{+}}$	[E2]		0.00377 6	B(E2)(W.u.)=0.00019 7
1515.500	5/2	696.74 5	12.3 10	616.7562	5/2 7/2 ⁻	MIT+E2		0.019 8	
		699.15 8 731.22 ^e 3	5.6 10 57 ^e 3	582.230	$\frac{1}{2}$ $\frac{7}{2^{-}}$				
		795.27 6 975.72 6	13.8 <i>24</i> 100 <i>6</i>	518.3279 337.7178	5/2 ⁻ 9/2 ⁻	E2		0.00430 6	
1343.8	$(19/2^{-})$	1099.26 7 477 9 ^a	92 <i>12</i> 100	214.3395 865.9	$7/2^{-}$ (15/2 ⁻)	E2(+M1)		0.0050 16	
1348.6	(9/2 ⁻)	149.9 ^{<i>a</i>}	$42^a 25$	1198.4	$(7/2^{-})$				
1350.7	23/2+	274.2 ^a 266.0 ^a	$33^{a} 3^{a}$	1074.7 1084.73	(5/2) $21/2^+$				
1372.3	$(17/2^+)$	502.3 ^a 933.4 ^a	$\frac{100^{a}}{18^{a}} \frac{7}{9}$	848.37 438.68	19/2 ⁺ 15/2 ⁺				
1291.0	17/2-	1103.5^{a}	100 ^a 18	268.92	$13/2^+$				
1202.0	17/2	390.2	100	70J.7 1105 74	15/2	(M1 + E2)		0 15 6	Mult , D , O introhand , from (⁹ Do a)nu)
1393.0	(27/2) $(23/2^+)$	287.0 ^a 298.8 ^a	100	1105.74	25/2 25/2 ⁻	(M1+E2) (E1(+M2))	< 0.09	0.15 6	B(E1)(W.u.)>1.4×10 ⁻⁶ $M = 10^{-6}$
									Mult.: D+Q from $\gamma(\theta)$ in (⁵ Be, α 2n γ); $\Delta \pi$ =(yes) from level scheme; δ (E1,M2)<0.09 from RUL.

16

 $^{179}_{72}\mathrm{Hf}_{107}\text{--}16$

$\gamma(^{179}\text{Hf})$ (continued)

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	E _i (level)	\mathbf{J}_i^π	E_{γ}	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	δ	α^{c}	Comments
1433.189 $3/2^-$ 753.48 / 6 4.5 8 679.516 $3/2^-$ 816.42° 5 12.9° 17 616.756 7/2^- $0.0092 3$ $0.0092 3$ 94.867.18 38.0 15 518.3279 $5/2^ E2(+MI)$ $0.0092 3$ 1012.296.18 100 7 420.8943 3/2^- M1+£2 $0.81 + 27 - 23$ $0.0005 6$ 1436.353 7/2 ⁻ 315.49 8 1.1.4 1120.816 $9/2^+$ $0.00905 13$ 1436.353 7/2 ⁻ 315.49 8 1.1.4 1120.816 $9/2^+$ $0.00905 13$ 1436.353 7/2 ⁻ 315.49 8 1.1.4 1120.816 $9/2^+$ 0.01365 1438.94 3/2 ⁻ 16.59 15 4.9 5 870.222 7/2 ⁻ $M1 + E0$ 0.01365 1458.994 3/2 ⁻ 918.029 14 100 2 518.3279 5/2 ⁻ $M1 + E2$ $0.010 3$ 1458.994 3/2 ⁻ 918.029 14 100 2 518.3279 27/2 ⁻ $M1 + E2$ $0.011 5$ 138.14 75 4 420.8943 3/2 ⁻ $M1 + E2$ $0.011 5$ $0.008 7 19$ 1482.031 3/2 ⁺ 478.	1404.5+x	$(21/2^+)$	(x)		1404.5	$(23/2^+)$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1433.189	3/2-	753.48 16	4.5 8	679.516	3/2-				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			816.42 ^e 5	12.9 ^e 17	616.7562	7/2-				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			914.867 <i>18</i>	38.0 15	518.3279	5/2-	E2(+M1)		0.008 3	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			956.79 3	39 13	476.3341	5/2-	M1		0.00928 13	
1456.35 //2 315.49 1.14 1120.816 9/2 ² 357.999 16 4.5 1078.349 (7)2 ² 432.701 6 7.0 1003.650 5/2 ⁺ (E1) 0.00905 13 566.159 15 4.9 5 870.222 7/2 ⁻ M1 0.01365 918.029 1/4 1002 518.3279 5/2 ⁻ M1(+E2) ≤0.32 0.0100 3 1458.994 3/2 ⁻ 588.774 1004 870.222 7/2 ⁻ E2 0.0128 670.89 23.3 18 788.185 5/2 ⁻ M1+E2 0.7 +5-4 0.018 779.41 373 37 679.516 3/2 ⁻ M1+E2 0.015 100852 1083.93 6 76 214.3395 7/2 ⁻ M1 0.00682 10 1482.031 3/2 ⁺ 478.369 36.3 1003.650 5/2 ⁺ M1<(+E2)	1.426.252	Z /2-	1012.296 18	100 7	420.8943	$3/2^{-}$	M1+E2	0.81 + 27 - 23	0.0065 6	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1436.353	7/2	315.49 8	1.1 4	1120.816	9/2				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			357.999 10	4.5 4	10/8.349	$(1/2)^{+}$	(E1)		0.00005.12	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			432.701.0	1.0 7	1003.030	5/2" 7/2-	(EI) M1+E0		0.00905 15	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			200.139 13 210.66 0	4.9 J	616 7562	7/2	$M1 \pm E0$		0.01265	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			019.00 9 019.00 14	25.5 14	518 2270	1/2 5/2-	M1(+E2)	<0.22	0.01505	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1458 004	3/2-	918.029 14 588 774 8	100 2	318.3279	3/2 7/2-	$MI(\pm E2)$	≤0.52	0.0100 5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14,30.994	5/2	670.80.6	23 3 18	788 185	5/2-	L_2 M1+E2	0.7 + 5.4	0.01298	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			738 388 22	23.3 10	720.613	$\frac{3}{2}$	$M1(\pm E0)$	0.7 +3-4	0.018 4	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			779 41 3	37.3	679 516	$3/2^{-}$	M1+F2		0.011.5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1038 11 4	75 <i>4</i>	420 8943	$3/2^{-}$	$E_{2}(+M_{1})$		0.0057.19	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1083.93 6	76.4	375.0352	$1/2^{-}$	M1		0.00682.10	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			$1244.73 \int 6$	67f	214 3305	7/2-			0100002 10	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1482 031	3/2+	478 369 7	36.3	1003 650	5/2+	$M1(\pm F2)$		0.038.17	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1402.051	5/2	693 89 4	20411	788 185	$5/2^{-}$	WII(+L2)		0.050 17	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			761 413 11	100.3	720.613	$3/2^{-}$	E1		0.00275.4	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			867.816 13	78.9 15	614.204	$1/2^{-}$	E1		0.00213 3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1491.0	$(17/2^+)$	1052.4 ^{<i>a</i>}	53 ^a 6	438.68	$15/2^+$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1222.0 ^a	100 ^a 18	268.92	$13/2^{+}$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1520.6	$(19/2^+)$	210.9 ^a	100	1309.8	$(17/2^+)$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1532.277	5/2+	528.626 7	100 4	1003.650	5/2+	M1		0.0416	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			744.079 15	23.1 12	788.185	5/2-				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			811.65 5	12.4 21	720.613	3/2-				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			852.798 16	47.8 23	679.516	3/2-				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1014.06 13	34 <i>3</i>	518.3279	5/2-				
1053.2^{b} <105 ^b 518.3279 5/2 ⁻ I _v : from I(1053v):I(1197v) for two-photon	1572.56	3/2-	955.82 <i>3</i>	100 10	616.7562	$7/2^{-}$	E2		0.00448 7	
			1053.2 ^b	<105 ^b	518.3279	5/2-				I_{γ} : from I(1053 γ):I(1197 γ) for two-photon
cascade data in (n,γ) E=thermal assuming										cascade data in (n,γ) E=thermal assuming
1197γ is not a doublet there.										1197 γ is not a doublet there.
1151.63 <i>15</i> 36 <i>4</i> 420.8943 $3/2^-$ M1(+E0) Other I γ : at least 47 <i>14</i> from (n, γ) E=7.78 eV res.			1151.63 15	36 4	420.8943	3/2-	M1(+E0)			Other I γ : at least 47 <i>14</i> from (n, γ) E=7.78 eV res.
1197.46 ^{dg} 8 <123 375.0352 $1/2^-$ All or most of I γ deexcites 1811 level.			1197.46 ^{dg} 8	<123	375.0352	$1/2^{-}$				All or most of I γ deexcites 1811 level.
1614.125 $3/2^-, 1/2^-$ 463.710 12 13.5 10 1150.411 $1/2^+$	1614.125	$3/2^{-}, 1/2^{-}$	463.710 12	13.5 10	1150.411	$1/2^+$,
825.98 5 25 3 788.185 5/2-			825.98 5	25 3	788.185	5/2-				
1095.77 8 100 17 518.3279 5/2 ⁻ E2(+M1) 0.0050 17			1095.77 8	100 17	518.3279	5/2-	E2(+M1)		0.0050 17	

17

 $^{179}_{72}\mathrm{Hf}_{107}\text{--}17$

$\gamma(^{179}\text{Hf})$ (continued)

E _i (level)	\mathbf{J}_i^π	Eγ	I_{γ}	\mathbf{E}_{f}	J_f^{π}	Mult.	δ	α^{c}	Comments
1614.125	3/2-,1/2-	1138.03 <i>16</i> 1239.18 <i>23</i>	48 8 92 <i>33</i>	476.3341 375.0352	5/2 ⁻ 1/2 ⁻	M1,E2		0.0038 12	
1617.7	$(21/2^{-})$	525.0 ^a	100	1092.7	$(17/2^{-})$				
1624.3	$25/2^+$	273.4 ^a	25 ^a 6	1350.7	$23/2^{+}$				
		539.6 ^a	100 ^a 13	1084.73	$21/2^{+}$				
1668.957	3/2+	433.520 9	15.1 7	1235.440	5/2+	M1		0.0698	
		483.106 7	59 8	1185.848	3/2+	M1		0.0526	
		518.544 9	100 8	1150.411	$1/2^{+}$	M1		0.0438	
		1293.49 ^J 18	15 ^J	375.0352	$1/2^{-}$				
1675.3	$(19/2^+)$	365.5 ^a	100	1309.8	$(17/2^+)$				
1679.5+x	$(23/2^+)$	275.0 ^a	100	1404.5+x	$(21/2^+)$				
1687.13	$(3/2)^{-}$	816.42 ^e 5	35 ^e 5	870.222	7/2-				
		966.53 4	70 3	720.613	3/2-	M1(+E0)			
		1007.57 7	100 14	679.516	3/2-	M1(+E0)			
1.607.0	(10/2-)	10/2.93° 9	326 7	614.204	$1/2^{-}$				
1687.8+x	(19/2)	283.3	100	1404.5+x	$(21/2^{+})$				
1702.5	(29/2)	309.6 ^d	100^{a} /	1393.0	(21/2)				
1706.062	$(2/2)^{-}$	597.0 ⁴	83 ^a 10	1105.74	25/2	M1 . E2	10,106	0.21.6	
1700.002	(3/2)	247.009 4 426 50 4	3.33	1436.994	3/2 2/2-	MIT+E2	1.2 +10-0	0.21 0	
		430.39 4	2.2 / 15 3	720 613	3/2-	$M1\pm E2$	$1.2 \pm 7_{-1}$	0.0060.0	Other In: 67 $1/4$ in $(n x) = 7.78$ eV res
		1024 71 8	17	681.036	$9/2^{-}$	W11+L2	1.2 +7-4	0.0000 9	Other Ty: $07.14 \text{ m}(n, y) = -7.76 \text{ eV}$ res.
		1089 40 17	12.4.26	616 7562	7/2-				
		1092.00 13	16.9 25	614.204	1/2-	M1		0.00670 10	Other I γ : 36 from two-photon cascade data in (n,γ) E=thermal.
		1187.83 <i>13</i>	70 2	518.3279	5/2-	E2		0.00291 4	Other I γ : 89 from two-photon cascade data in (n, γ) E=thermal; 93 in (n, γ) E=7.78 eV res.
		1330.95 20	100 5	375.0352	1/2-	E2(+M1)		0.0033 9	Possible multiplet; see comment in (n,γ) E=thermal.
		1492.6 ^e 7	5.5 <mark>e</mark> 24	214.3395	7/2-				
1713.0	$(25/2^+)$	308.6 ^a	100	1404.5	$(23/2^+)$				
1715.935	$1/2^+, 3/2^+, 5/2^+$	183.661 <i>3</i>	22.1 11	1532.277	$5/2^{+}$				
		233.900 4	38.1 12	1482.031	$3/2^{+}$	M1+E2	1.1 + 4 - 3	0.26 3	
		466.380 6	100 6	1249.552	3/2-	E1		0.00765 11	
	a. (a	565.51 4	13.9 18	1150.411	1/2+				
1725.786	3/2-	456.346 16	16.3 6	1269.445	3/2-				
		876.56 7	14.0 15	849.200	1/2	N/1		0.00076.14	
		957.55 5	27.9 23	/88.185	5/2 2/2-	MI		0.00976 14	
		1005.24 3	98 15	/20.613	3/2 5/2-	NI I		0.00821 12	
		1024./1 ð	31	/01.0552	5/2				

18

 $^{179}_{72}\mathrm{Hf}_{107}\mathrm{-18}$

L

$\gamma(^{179}\text{Hf})$ (continued)

E _i (level)	J_i^π	E_{γ}	Iγ	E_f	J_f^π	Mult.	δ	α ^c	Comments
1725.786	3/2-	1046.16 ^{<i>f</i>} 6 1111.55 7 1350.75 9	25^{f} 100 15 48	679.516 614.204 375.0352	3/2 ⁻ 1/2 ⁻ 1/2 ⁻	M1		0.00641 9	E_{γ} : for doublet in (n,γ) E=thermal.
1/31.438	3/2	158.94 6 295.104 <i>14</i> 461.935 <i>23</i> 1030.39 <i>4</i>	2.5 11 11.7 17 12.8 8 56 11	1372.56 1436.353 1269.445 701.0552	3/2 7/2 ⁻ 3/2 ⁻ 5/2 ⁻	(E2) M1(+E2) M1(+E2)		0.0832 0.041 <i>18</i> 0.0058 <i>20</i>	
		1051.87 <i>4</i> 1117.23 <i>3</i>	65 5 100 <i>11</i>	679.516 614.204	3/2 ⁻ 1/2 ⁻	M1(+E2) (M1)		0.0055 <i>19</i> 0.00633 <i>9</i>	Mult.: M1+E0 from $\alpha(K)$ exp, but E0 component inconsistent with adopted J^{π} ; it could conceivably arise from an undetected impurity in ce spectrum in (n,γ) E=thermal.
		1310.70 8 1356.34 <i>10</i>	94 8 67 6	420.8943 375.0352	3/2 ⁻ 1/2 ⁻	(E2) M1		$0.00242 \ 4 \\ 0.00398 \ 6$	Mult.: M1(+E0) from α (K)exp, but E0 component inconsistent with placement.
1753.1	$(21/2^+)$	232.9^{a}	100 ^a 11 21 ^a 11	1520.6	$(19/2^+)$ $(17/2^+)$				
1755.337	3/2-	1054.25 <i>3</i> 1141.16 <i>3</i>	100 <i>5</i> 76.4 <i>20</i>	701.0552 614.204	5/2 ⁻ 1/2 ⁻	M1+E2 M1		0.0055 <i>19</i> 0.00601 <i>9</i>	Other Iy: 41 8 in (n,γ) E=7.78 eV res relative to
		1334.23 8	72 7	420.8943	3/2-	E2		0.00234 4	Other I γ : 23 10 in (n, γ) E=7.78 eV res relative to possible 1055 γ doublet I γ .
1756.02	3/2-	1036.1 ^b 1076.70 20	28 ^b 39	720.613 679.516	3/2 ⁻ 3/2 ⁻				I_{γ} : from (n,γ) E=thermal; doublet $I\gamma$ suitably
		1237.84 12	63	518.3279	5/2-				Doublet; intensity suitably divided.
		1279.45 11	100 8	476.3341	$5/2^{-1/2^{-1}}$	E2(+M1)		0.0035 11	
1757.72	$(3/2^-, 5/2^+)$	969.49 <i>11</i> 1543 7 3	82 8 100 21	788.185	$5/2^{-}$ $7/2^{-}$	1011		0.00382 0	
1762.80	(3/2)-	1042.28 7 1061.63 5	15.6 <i>17</i> 39	720.613 701.0552	3/2 ⁻ 5/2 ⁻	M1,E2		0.0056 19	Doublet; branching deduced from suitably divided
									Other I γ : 133 27 in (n, γ) E=7.78 eV res; probably for doublet.
		1148.50 16	23.2 19	614.204	1/2-	M1		0.00592 9	
		1244.73 ^J 6	37 J	518.3279	$5/2^{-}$	M1		0.00407.6	Other Lat: 87.20 in (n a) $E = 7.78$ eV res
		1342.0 5	100 10	420.8943	$\frac{3/2}{1/2^{-}}$	M1+E2	1.0 +6-4	0.00407 0	Other ry. of 20 III (II, γ) E=7.76 eV res.
		1548.78 ^f 12	34 <i>f</i>	214.3395	7/2-				

 $^{179}_{72}\mathrm{Hf}_{107}\mathrm{-}19$

From ENSDF

$\gamma(^{179}\text{Hf})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ	Iγ	E_f	\mathbf{J}_{f}^{π}	Mult.	δ	α ^c	Comments
1783.11	1/2,3/2,5/2+	779.1 ^{&} 2	65 13	1003.650	5/2+				
	1)-1)-1	1082.4 ^{&} 2	100 20	701.0552	5/2-				
		1103.6 ^{&} 2	38 15	679.516	3/2-				
1800.52	3/2-	1324.36 13	52 6	476.3341	5/2-	M1(+E2)		0.0033 10	
		1379.43 <i>13</i>	100 11	420.8943	3/2-				
	2 /2	1425.49 9	52 6	375.0352	1/2-				
1811.50	3/2-	941.17 13	6.2 11	870.222	7/2-			0.0040.16	
		1110.38 10	/8 / 21 3	/01.0552 679.516	3/2 3/2-	MI(+E2)		0.0049 16	
		1107 46 ^d 8	100 12	614 204	1/2-				Mult M1 E0 for doubly placed 1107
		1197.40 0	$100 T_{3}$	518 2270	1/2 5/0-				Mult $M1+E0$ for doubly-placed 1197γ .
		1293.49 ³ 18	24 ⁵	518.3279	5/2				
		1336.608	700	476.3341	5/2-	E2(+M1)		0.0020.8	
1001 00	(1/2= 2/2)	1391.09 17	30 4	420.8943	3/2 5/2-	E2(+M1)		0.0030 8	
1821.29	(1/2, 3/2)	1121.0~ 2	100 20	/01.0552	5/2				
		1141.3 ^{ccg} 2	125 25	679.516	3/2-				Doubly-placed γ in (n,γ) E=7.78 eV res only; E γ does not fit this placement in (n,γ) E=thermal.
		1207.0 ^{&} 2 1446.16 7	80 16	614.204 375.0352	1/2 ⁻ 1/2 ⁻				From (n,γ) E=7.78 eV res only. Branching: 60 <i>12</i> from (n,γ) E=7.78 eV res, 387
1826 0⊥v	$(21/2^{+})$	122 10	100	1404 5±v	$(21/2^{+})$				from (n,γ) E=thermal.
1846.32	(21/2)	$0757 \frac{8}{2}2$	52 11	870 222	(21/2)				
1040.52	(3/2)	$1167.0^{\circ}2$	100 21	670.516	2/2-				
		1107.2 2	100 21	614 204	1/2-				
1851 504	3/2+ 5/2+	$\approx 1231.0^{14}$	2189	1532 277	1/2 5/2+	$M1(\pm F2)$		0.11.5	
1051.501	5/2 ,5/2	847.877 20	100 4	1003.650	$5/2^+$	M1+E2	0.8 + 5 - 4	0.0099 18	
1856.0	$21/2^{-}$	474.1 ^{<i>a</i>}	100	1381.9	$17/2^{-}$				
1859.2	$(21/2^+)$	549.4 ^a	100	1309.8	$(17/2^+)$				
1861.238	5/2+	328.955 5	14.3 11	1532.277	$5/2^{+}$	M1+E0			
		547.86 5	13.9 15	1313.500	5/2-				
		740.48 4	24.8 26	1120.816	9/2+	(E2)		0.00769 11	Mult.: E2,M1 from $\alpha(K)$ exp in (n,γ) E=thermal;
		707 70 7	17.2	1078 240	$(7/2)^{+}$				$\Delta J \ge 2$ from placement.
		787 732 23	30 8 23	1073 565	$7/2^{-}$				
		857.601 21	100 4	1003.650	5/2+	M1(+E2)		0.009 4	
		926.4 3	12 4	935.643	7/2-	· -/			
		1072.93 ^e 9	33 ^e 7	788.185	5/2-				
1913.471	3/2-	480.268 20	9.2 16	1433.189	3/2-				

20

$\gamma(^{179}\text{Hf})$ (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}	I_{γ}	E_f	${ m J}_f^\pi$	Mult.	α^{c}	Comments
1913.471 1915.0 1928.846	3/2 ⁻ (23/2 ⁻) 1/2 ⁺ ,3/2 ⁺	599.965 8 644.09 5 678.18 8 1192.95 4 1492.6 ^e 7 571.2 ^a 259.889 7 396.602 25 742.01 6	$\begin{array}{r} 49.2 \ 10 \\ 9.8 \ 14 \\ 5.7 \ 6 \\ 100 \ 14 \\ 10^{e} \ 4 \\ 100 \\ 30.4 \ 16 \\ 7.7 \ 9 \\ 75 \ 5 \end{array}$	1313.500 1269.445 1235.440 720.613 420.8943 1343.8 1668.957 1532.277	$5/2^{-}$ $3/2^{-}$ $5/2^{+}$ $3/2^{-}$ $3/2^{-}$ $(19/2^{-})$ $3/2^{+}$ $5/2^{+}$ $3/2^{+}$	M1 M1	0.0301 0.0251	
		778.39 5	100 6	1150.411	1/2+	M1(+E0)	0.013 5	Mult.: M1+E0 from $\alpha(K)$ exp in (n,γ) E=thermal is deduced from ce doublet; evaluator does not consider E0 component sufficiently certain to constitute the basis for a J assignment.
1941 6	27/2+	1507.66^8 18 $317^{\dagger}8$	85 11	420.8943	3/2 ⁻ 25/2 ⁺			Doubly-placed line; little of $I\gamma$ belongs here.
1711.0	21/2	591.1 ^{<i>a</i>}	100	1350.7	$\frac{23}{2}^{+}$			
1945.864	(1/2,3/2)	190.513 <i>21</i> 220.080 <i>9</i> 676.13 <i>18</i>	75 8.018 184	1755.337 1725.786 1269.445	3/2 ⁻ 3/2 ⁻ 3/2 ⁻			
		1267.0 ^{bg}	b	679.516	3/2-			I_{γ} : I(1267 γ)/I(1332 γ)=0.77.
		1332.3 ^{bg}	b	614.204	1/2-			
		1525.5 3	100 17	420.8943	3/2-			
1056 1	$(21/2^{-})$	15/1.7 7	67 20 100	375.0352	$1/2^{-}$			
1930.1+x 1074.1+x	(21/2) $(25/2^+)$	208°	100 100 ^a 14	1087.8+x 1670 5+x	(19/2) $(23/2^+)$			
17/4.1+A	(23/2)	569.6 ^a	36^{a} 14	1079.3+x 1404 5+x	$(23/2^{+})$ $(21/2^{+})$			
2007.2	$(23/2^+)$	254.3 ^a 486.4 ^a	$100^{a} 25 \\ 75^{a} 25$	1753.1 1520.6	$(21/2^+)$ $(19/2^+)$			
2033.6	(31/2 ⁻)	331.3^{a}	$100^{a} 13$	1702.5	$(29/2^{-})$			
2044.1	(27/2 ⁺)	331.2^{a} 639.4^{a}	$100^{a} 13$ $25^{a} 13$	1393.0 1713.0 1404.5	(27/2) $(25/2^+)$ $(23/2^+)$			
2047.0	(1/2,3/2)	1625.9 ^b 1672.0 <i>3</i>	77 <mark>b</mark> 100	420.8943 375.0352	3/2 ⁻ 1/2 ⁻			
2052.6	1/2,3/2,5/2+	1332.0 ^b 1351.5 ^b	100 ^b 68 ^b	720.613 701.0552	3/2 ⁻ 5/2 ⁻			
2070.7	(1/2,3/2)	1350.4 <i>3</i>	88 [@]	720.613	3/2-			
		1456.5 <mark>b</mark>	86 <mark>b</mark>	614.204	$1/2^{-}$			
		1649.78 10	100 [@]	420.8943	3/2-			

$\gamma(^{179}\text{Hf})$ (continued)

E _i (level)	\mathbf{J}_i^π	Eγ	Iγ	E_f	J_f^{π}	Comments
2070.7	(1/2,3/2)	1695.7 <mark>b</mark>	79 b	375.0352	$1/2^{-}$	
2082.8	(1/2,3/2)	1078.1 ^{&g} 2	<333	1003.650	5/2+	I _{γ} : from I(1078 γ doublet):I(1606 γ) in (n, γ) E=7.78 eV res. γ placed elsewhere in (n, γ) E=thermal.
		1381.7 <mark>b</mark>	23 b	701.0552	5/2-	$E\gamma = 1381.1$ 2 for doublet in (n,γ) $E=7.78$ eV res.
		1403.3 ^{bg}	32 <mark>b</mark>	679.516	3/2-	
		1606.5 ^b	100 <mark>b</mark>	476.3341	5/2-	Other Ey: 1605.0 2 from (n, γ) E=7.78 eV res.
		1661.9 ^b	99 <mark>b</mark>	420.8943	3/2-	I_{γ} : 76 <i>15</i> from (n,γ) E=7.78 eV res. Other E _γ : 1660.5 2 from (n,γ) E=7.78 eV res.
		1707.8 ^b	47 <mark>b</mark>	375.0352	$1/2^{-}$	
2088.4	(1/2,3/2)	1408.9 ^b	43 <mark>b</mark>	679.516	$3/2^{-}$	
		1713.4 ^b	100 <mark>b</mark>	375.0352	$1/2^{-}$	
2093.40		1305.3 ^{&g} 2	27 6	788.185	5/2-	I_{γ} : from ¹⁷⁸ Hf(n, γ) E=7.78 eV res.
		1672.5 <mark>&</mark> 2	100 21	420.8943	3/2-	I_{γ} : from ¹⁷⁸ Hf(n, γ) E=7.78 eV res.
2133.2?	$(23/2^+)$	274 ^{<i>ag</i>}	100	1859.2	$(21/2^+)$	
2146.1	(1/2,3/2)	1445.0 ^b	57 <mark>6</mark>	701.0552	$5/2^{-}$	
		1531.9 ^b	100 ⁰	614.204	$1/2^{-}$	
2150.3	$1/2^{(-)}, 3/2, 5/2^+$	1429.7 ^b	39 <mark>0</mark>	720.613	3/2-	
		1674.0 ^b	100 ⁰	476.3341	5/2-	
		1729.4 ^b	92 <mark>0</mark>	420.8943	3/2-	
2183.1	1/2,3/2,5/2+	1462.5 ^b	100 ⁰	720.613	3/2-	
		1503.6 ^b	71 ⁰	679.516	3/2-	
		≈1707.0 ⁸	~~ @	476.3341	5/2-	E_{γ} : from (n,γ) E=7.78 eV res. Similar E_{γ} placed from 2083 level in (n,γ) E=thermal.
2214.4	(1/2,3/2)	1600.1 3	83 e	614.204	1/2-	
2228-1	1/2 3/2 5/2+	1840.6	100	3/5.0352	$\frac{1}{2}$	E : for doubly placed of
2220.1	1/2,3/2,3/2	1507.0018 154878f12	$\frac{70}{34f}$	679 516	3/2-	E_{γ} . for doubly-placed γ .
		1348.78° 12 1807 3 ^b	100 ^b	420 8943	3/2-	
2242 59	$(20/2^+)$	301 78	100	10/1 6	5/2 27/2+	
2242.3:	(2)/2)	618 78		1674.3	25/2+	
2243.5+x?	$(23/2^{-})$	287 ^{<i>ag</i>}	<100 ^a	1024.5 1956.1+x	$(21/2^{-})$	
		556 ^{ag}	≤100 ^{<i>a</i>}	1687.8+x	$(19/2^{-})$	
2249.97	$(3/2^{-})$	1461.4 ^b	41 ^b	788.185	5/2-	
		1529.0 ^b	36 <mark>b</mark>	720.613	3/2-	
		1875.3 4	95 [@]	375.0352	$1/2^{-}$	

$^{179}_{72}\mathrm{Hf}_{107}\mathrm{-22}$

From ENSDF

L

$\gamma(^{179}\text{Hf})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f	\mathbf{J}_{f}^{π}
2249.97	(3/2-)	2035.53 23	100 [@]	214.3395	7/2-
2254.2	$1/2^{(-)}, 3/2, 5/2^+$	1735.9 ^b	100 <mark>b</mark>	518.3279	$5/2^{-}$
		1833.3 <mark>b</mark>	99 <mark>b</mark>	420.8943	3/2-
2281.1	$(25/2^+)$	273.9 ^a	100	2007.2	$(23/2^+)$
2287.2+x	$(27/2^+)$	313.2 ^a	100 ^a 17	1974.1+x	$(25/2^+)$
		607.5 ^a	100 ^a 33	1679.5+x	$(23/2^+)$
2309.2	1/2,3/2,5/2+	1588.6 ^b	91 ^b	720.613	3/2-
		1888.3 ^b	100 ^b	420.8943	3/2-
2366.9	$(1/2^{-}, 3/2)$	1646.3 ^b	20 ^b	720.613	$3/2^{-}$
		1687.4 <mark>b</mark>	12 ^b	679.516	3/2-
		1752.7 <mark>b</mark>	13 ^b	614.204	$1/2^{-}$
		1848.6 <mark>b</mark>	13 ^b	518.3279	5/2-
		1890.6 ^b	100 ^b	476.3341	5/2-
		1946.0 <mark>b</mark>	22 <mark>b</mark>	420.8943	3/2-
		1991.9 ^b	28 <mark>b</mark>	375.0352	$1/2^{-}$
2386.3	$(33/2^{-})$	352.8 ^a	100 ^a 25	2033.6	$(31/2^{-})$
		683.9 ^a	100 ^a 25	1702.5	$(29/2^{-})$
2394.2	$1/2^{(-)}, 3/2, 5/2^+$	1606.0 ^b	21 ^b	788.185	5/2-
		1714.7 3	19 [@]	679.516	3/2-
		1973.3 <mark>b</mark>	100 ^b	420.8943	3/2-
2395.1	25/2-	539.1 ^a	100	1856.0	$21/2^{-}$
2396.5	$(29/2^+)$	352.5 ^a	100 ^a 14	2044.1	$(27/2^+)$
		683.5 ^{<i>a</i>}	29 ^{<i>a</i>} 14	1713.0	$(25/2^+)$
2415.5	$(1/2^{-}, 3/2)$	1627.7 5	28	788.185	5/2-
		1800.7 <mark>6</mark>	77	614.204	$1/2^{-}$
		1938.6 ^b	60 ^b	476.3341	$5/2^{-}$
		1994.0 <mark>6</mark>	100 ⁶	420.8943	3/2-
2425.3	$(1/2^-, 3/2)$	1724.2 ^b	92 <mark>b</mark>	701.0552	5/2-
		1811.1 <mark>6</mark>	100 <mark>6</mark>	614.204	$1/2^{-}$
2451.31	$(3/2^{-})$	1771.5 ^b	23 ^b	679.516	3/2-
		1836.8 <mark>b</mark>	64 ^b	614.204	$1/2^{-}$
		2030.1 ^b	100 ^b	420.8943	$3/2^{-}$
		2236.97 23	24 [@]	214.3395	7/2-
2456.7	(29/2 ⁻)	1351 ^a	100	1105.74	$25/2^{-}$

23

					Add	opted Le	vels, Gamma	s (continued)	
						$\gamma(^1$	⁷⁹ Hf) (contin	ued)	
E _i (level)	\mathbf{J}_i^π	Eγ	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult.	α^{C}	Comments	
2460.3	(1/2, 3/2)	2039.4 ^b	100 ^b	420.8943	3/2-				
	(1)-1)	2085.3 ^b	73 ^b	375.0352	$1/2^{-}$				
2475.5	$(3/2^{-})$	1774.4 <mark>b</mark>	18 <mark>b</mark>	701.0552	5/2-				
		1861.3 ^b	35 <mark>b</mark>	614.204	1/2-				
		2054.6 ^b	100 ^b	420.8943	3/2-				
		2100.5 ^b	87 <mark>b</mark>	375.0352	$1/2^{-}$				
		2261.2 ^b	12 ^b	214.3395	$7/2^{-}$				
2509.5	(1/2,3/2)	1830.0 <mark>b</mark>	30 ^b	679.516	3/2-				
		2088.6 <mark>b</mark>	86 <mark>b</mark>	420.8943	3/2-				
		2134.5 ^b	100 ^b	375.0352	$1/2^{-}$				
2522.7	(1/2 ⁻ ,3/2)	2046.4 <mark>b</mark>	76 <mark>b</mark>	476.3341	5/2-				
		2101.8 ^b	56 <mark>b</mark>	420.8943	3/2-				
		2147.7 <mark>b</mark>	100 <mark>b</mark>	375.0352	$1/2^{-}$				
2549.6	$(33/2^{-})$	91 ^{<i>ag</i>}		2456.7	$(29/2^{-})$	[E2]	5.12	7	
		516 ^{<i>ug</i>}	$< 6^{a}$	2033.6	$(31/2^{-})$	[M1]	0.0443	$B(M1)(W.u.)=1.5\times10^{-7}+17-15$	
2(01.2	(1/2 - 2/2)	847.1°	100° 13	1/02.5	(29/2)	[E2]	0.005768	B(E2)(W.U.)=0.0007.3	
2001.2	(1/2, 3/2)	2124.9°	29°	4/0.5541	5/2 2/2-				
		2180.3°	100h	420.8945	3/2 1/2-				
2610.7	(1/2 - 2/2)	1006.6.2	21@	575.0552 614.204	1/2				
2010.7	(1/2, 3/2)	1990.03	20^{b}	518 2270	1/2 5/2-				
		2092.4	20°	J10.5279 J20.8043	3/2				
		2189.0019	100 ^b	420.0943	$\frac{3}{2}$				
2617 62	$(31/2^{+})$	67678	100	10/1 6	1/2 27/2 ⁺				
2638.8	(1/2 3/2)	1018 2 3	66 [@]	720.613	3/2-				
2030.0	(1/2, 3/2)	2263.3^{b}	100 ^b	375 0352	$\frac{3}{2}$				
2654 13	(1/2 - 3/2)	1865 94 24	97@	788 185	5/2-				
205 1.15	(1/2, 3/2)	1932 5 ^b	72 ^b	720.613	3/2-				
		2134.8^{b}	92^{b}	518 3279	5/2-				
		2278 1 ^b	100 ^b	375 0352	$1/2^{-}$				
2702.9	$(1/2^{-}.3/2)$	2184.6 ^b	61 ^b	518.3279	5/2-				
2702.7	(1/2 ,0/2)	2327.9 ^b	100 ^b	375.0352	$1/2^{-}$				
2743.69	$(1/2^{-}.3/2)$	2042.7^{b}	61 ^b	701.0552	5/2-				
	(-1- ,-1=)		~ -		- / -				

From ENSDF

I

					Adopted	Levels, Ga	(tinued)	
						$\gamma(^{179}\text{Hf})$ (c	ontinued)	
E _i (level)	\mathbf{J}_i^π	Eγ	I_{γ}	E_f	${ m J}_f^\pi$	Mult.	α ^{C}	Comments
2743.69	(1/2 ⁻ ,3/2)	2126.96 21 2321 9 ^b	$62^{@}$	616.7562 420 8943	$7/2^{-}$			
2759.6	(35/2 ⁻)	373.5 ^a 725.8 ^a	$100^{a} 50$ $50^{a} 50$	2386.3 2033.6	$(33/2^{-})$ $(31/2^{-})$			
2769.6	(31/2 ⁺)	373.2^{a} 725.5^{a}	$25^a 25$ $100^a 25$	2396.5 2044.1	$(29/2^+)$ $(27/2^+)$			
2898.0	(35/2 ⁻)	348.4 ^{<i>a</i>}	100	2549.6	(33/2 ⁻)			
2905.2	(1/2,3/2)	2184.5 ^b	50 <mark>b</mark>	720.613	3/2-			
		2225.7 <mark>b</mark>	42 ^b	679.516	3/2-			
		2484.3 ^b	92 <mark>b</mark>	420.8943	3/2-			
		2530.2 ^b	100 ^b	375.0352	$1/2^{-}$			
2983.3	$1/2^{(-)}, 3/2, 5/2^+$	2303.8 ^b	38 ^b	679.516	3/2-			
		2507.0 ^b	100 ^b	476.3341	5/2-			
3076.2	$(1/2^-, 3/2)$	2397.7 <mark>6</mark>	38 <mark>6</mark>	679.516	3/2-			
		2463.0 ^b	42 ^b	614.204	$1/2^{-}$			
		2559.7 5	100	518.3279	5/2-			
3148.8	$(1/2^{-}, 3/2)$	2447.7 5	55 [@]	701.0552	5/2-			
	(27)	2534.9 ^b	1000	614.204	1/2-			
3151.5?	$(37/2^{-})$	392eug	e	2759.6	$(35/2^{-})$			
3161.62	$(33/2^+)$	397 ^{eag}	е	2380.5	(33/2) $(31/2^+)$			
5101.0.	(33/2)	765 ^{eag}	е	2396.5	$(29/2^+)$			
3177.9	$1/2^{(-)}, 3/2, 5/2^+$	2459.0 ^b	87 <mark>b</mark>	720.613	3/2-			
		2703.3 ^b	100 <mark>b</mark>	476.3341	5/2-			
3268.2	(37/2 ⁻)	370.4 ^a	100 ^{<i>a</i>} 25	2898.0	$(35/2^{-})$			
		718.5 ^{<i>a</i>}	50 ^{<i>a</i>} 25	2549.6	$(33/2^{-})$			
3345.4	$1/2^{(-)}, 3/2, 5/2^+$	2644.3 <i>3</i>	62 ^w	701.0552	5/2-			
		2924.3 ⁰	1000	420.8943	3/2-			
3347.2	(1/2, 3/2)	2668.2 ⁰	58 <mark>0</mark>	679.516	3/2-			
		2972.7 ⁰	1000	375.0352	1/2-			
3373.6?	$(35/2^+)$	75618	100	2617.6?	$(31/2^+)$			
3409.5	(1/2,3/2)	2729.9 ⁰	1000	679.516	3/2-			
		3034.4 ^b	79 ⁰	375.0352	1/2-			
3439.2	(39/2 ⁻)	171.0 ^{<i>a</i>}	100	3268.2	(37/2 ⁻)	(M1,E2)	0.68 20	Mult.: from $\alpha(\exp)$ in (${}^{9}Be, \alpha 2n\gamma$). B(M1)(W.u.)=0.00019 <i>10</i> if pure M1.

 $^{179}_{72}\mathrm{Hf}_{107}\mathrm{-}25$

$\gamma(^{179}\text{Hf})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f	${ m J}_f^\pi$	Mult.	α^{c}	Comments	
3659.1?	(39/2-)	391 <i>ag</i>		3268.2	$(37/2^{-})$				
3775.2	$(43/2^+)$	336.0 ^{<i>a</i>}	100	3439.2	$(39/2^{-})$	(M2)	0.518	B(M2)(W.u.)=0.010 4	
4204.7?	(39/2+)	831 [†] 8	100	3373.6?	(35/2+)			Mult.: from $\alpha(\exp)$ in (³ Be, $\alpha 2n\gamma$).	
[†] From Coulomb excitation; uncertainty unstated by authors.									
[‡] From ¹⁷⁹ Lu β^- decay.									
[#] From 179 Hf IT decay (25.05 d).									
^(a) From two-photon cascade data in (n,γ) E=thermal.									
^{&} From ¹⁷⁸ Hf(n, γ) E=7.78 eV res.									
^{<i>a</i>} From (${}^{9}\text{Be}, \alpha 2n\gamma$).									
^b E γ from level energy difference in (n, γ) E=thermal. I γ is relative to 100 for strongest transition observed; stronger transition(s) from level may exist. Transition is									
deduced from two-photon cascade data of 1988Bo44, assuming that authors' cascade γ order is correct, that cascade γ rays are consecutive and that only two-photon									
cascades were identified.									
^c Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned									
multipolarities, and mixing ratios, unless otherwise specified.									

^d Multiply placed.

26

^e Multiply placed with undivided intensity.
 ^f Multiply placed with intensity suitably divided.

^{*g*} Placement of transition in the level scheme is uncertain.

From ENSDF

 $^{179}_{72}\mathrm{Hf}_{107}$

Adopted Levels, Gammas Legend Level Scheme (continued) Intensities: Relative photon branching from each level ---- γ Decay (Uncertain) 1 ²²03,3 100 $\frac{(1/2,3/2)}{(31/2^+)}$ 2638.8 2617.6 2610.7 $\frac{(1/2^-,3/2)}{(33/2^-)}$ 2601.2 2549.6 30 ns 10 $\frac{(1/2^-, 3/2)}{(1/2, 3/2)}$ 2522.7 2509.5 (3/2-) 2475.5 (1/2,3/2) ¥ 2460.3 (29/2-) 2456.7 $\frac{(2)/2^{-})}{(3/2^{-})}$ $\frac{(1/2^{-},3/2)}{(1/2^{-},3/2)}$ 2451.31 2425.3 (1/2-,3/2) 2415.5 $(29/2^+)$ 2396.5 25/2⁻ 1/2⁽⁻⁾,3/2,5/2⁺ 2395.1 ____ 2394.2 (33/2-) 2386.3 (27/2+) 2044.1 (31/2-) T V 2033.6 i. 27/2+ 1941.6 v 21/2-1856.0 $(25/2^+)$ 1713.0 (29/2-) 1702.5 • 25/2-1105.74 25.05 d 25 5/2 788.185 3/2 720.613 $\leq 0.3 \text{ ns}$ ŧ <u>5/2</u> 3/2 V T 701.0552 ¥ ¥ 679.516 1/2 614.204 0.50 ns 15 5/2-518.3279 <0.2 ns 5/2-476.3341 ¥ Y ¥ 3/2-¥ 420.8943 1/2-375.0352 18.67 s 4 7/2-214.3395 1.85 ns 4 9/2+ 0.0 stable

 $^{179}_{72}\mathrm{Hf}_{107}$

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{179}_{72}\mathrm{Hf}_{107}$

Level Scheme (continued)

Legend

 $^{179}_{72}\mathrm{Hf}_{107}$

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

 $^{179}_{72}\mathrm{Hf}_{107}$

41

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

 $^{179}_{72}\mathrm{Hf}_{107}$

¹⁷⁹₇₂Hf₁₀₇

Band(P): K^π=3/2⁺ (1/2[521]+1⁻) band

<u>5/2+</u> 1532.277

3/2+ 1482.031

 $^{179}_{72}\mathrm{Hf}_{107}$

Band(V): 3/2[501] band

 $(5/2^{-})$ 1534.6

1458.994

1428.6

(7/2-)

Band(Q): 7/2[633] band

 $(13/2)^+$ 1359.0

> 5/2-1313.500

 $(11/2^+)$ 1282.5

Band(S): $K^{\pi} = 1/2^{+}$ (1/2[510]-1-) band

1235.440

1185.848

5/2+

1168.95

1105.92

 $(9/2^+)$

 $(7/2^+)$

3/2+

9/2⁺

Band(R): $K^{\pi}=9/2^+$ [9/2[624]+0⁺] g.s. β -vibrational band

1/2+

1150.411

1120.816

 $^{179}_{72}\mathrm{Hf}_{107}$

49

Band(U): 3/2[521] band

(7/2-)

1405.2

3/2-

1269.445

1249.552

3/2-

Band(**T**): $K^{\pi} = 3/2^{-1}$ [7/2[514] -2^+] γ -vibrational band

3/2-

Band(W): 1/2[501] band

(3/2)- 1706.062

(1/2⁻) 1658.4

 $^{179}_{72}\mathrm{Hf}_{107}$