Adopted Levels, Gammas

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 110,265 (2009)	15-Nov-2008

 $Q(\beta^{-}) = -8.06 \times 10^{3} 3$; $S(n) = 1.073 \times 10^{4} 6$; S(p) = 280 16; $Q(\alpha) = 5981 5 2012$ Was Note: Current evaluation has used the following Q record -8030 3010700 60 243 206052 18 2003 Au03. Other Reactions:

⁸⁹Y(⁹⁰Zr, γ), E(⁹⁰Zr)=352 MeV (346 MeV mid-target) (2003Ca14): fragment mass analyzer with position-sensitive parallel-grid avalanche counter at focal plane; recoils implanted in Si double-sided strip detector; 4 packs of BaF₂ detectors (37 crystals per pack); BGO multiplicity and sum-energy array (for low-energy γ -rays); measured spectra of high-energy γ -rays emitted by GDR; deduced Γ(GDR)=5.0 MeV 4.

¹⁷⁹Au Levels

Additional information 1.

Cross Reference (XREF) Flags

Α	¹⁸³ Tl	α	decay	(53.3	ms)
---	-------------------	---	-------	-------	-----

- **B** 90 Zr(90 Zr,p γ),
- C 149 Sm(35 Cl,5n γ)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments			
0.0	(1/2+,3/2+)	7.1 s 3	AB	$%ε+%β^+=78.0$ 9; $%α=22.0$ 9 (1986Ke03) J ^π : neighboring lower-mass Au isotopes probably have 1/2 ⁺ or 3/2 ⁺ ground states, but higher-mass isotopes probably have 3/2 ⁻ or 5/2 ⁻ ground states. α decay to ¹⁷⁵ Ir (Eα=5848 5 (1968Si01), Q(α)=5982 5 if g.s. to g.s. transition) is unhindered (HF<4), but Q(α)=6052 18 from 2003Au03 suggests that an excited state in ¹⁷⁵ Ir is fed. Thus, the structure of ¹⁷⁹ Au(g.s.) appears to differ from that of the (5/2 ⁻) 1/2[541] ¹⁷⁵ Ir g.s. See 1999Mu05 for calculation of low-lying bandhead energies for odd-A Au isotopes with A=177 through 185. T _{1/2} : weighted average of 7.2 s 5 (1968Si01), 8.1 s 7 (1968De01). (6.9 s 3 (1980Da09). Other T ₁ /α: 3.3 s 13 (1996Pa01).			
0.0+x	(1/2+,3/2+,5/2+)		A	E(level): possibly, a low-energy transition connects this level to the g.s. but was missed in the α -decay study reported in 2004Ra28. Alternatively, this level may itself Be the g.s. (i.e., x=0). J ^{π} : (E1) 62 γ from (3/2 ⁻) 62+x level. If J=5/2, level may Be analogous to the low-lying 5/2[402] prolate bandhead in ¹⁷⁵ Ir.			
0.0+z [@]	(5/2 ⁻)		В	J^{π} : J=5/2 member of 1/2[541] band expected at lower energy than the J=9/2 member, but J=9/2 to 5/2 transition has not yet been observed.			
0.0+y [@]	(9/2 ⁻)		BC	A (9/2 ⁻) 203.6+x level is observed in α decay; its relationship (if any) with this level is not known.			
16.6+y 9			В	J^{π} : 371 γ is $\Delta J=0$ or 2 from (13/2 ⁺) 388+y; 350 γ from (9/2 ⁺) 367+y.			
21.2+y ^a 10	$(7/2^{-})$		BC	J^{π} : from possible band assignment.			
61.8+x <i>3</i>	(3/2 ⁻)		A	J^{π} : (E2) 89γ from $(7/2^{-})$ 151+x. E(level): an alternative value of 89.4+x is possible because order of 62γ -89 γ cascade has not been firmly established.			
86+x <i>13</i>		>100 µs	A	%IT=? E(level): from difference in adopted values of $E\alpha$ to this level and $E\alpha$ to 203.6+x level in ¹⁸³ Tl α decay (53.3 ms). T _{1/2} : from ¹⁸³ Tl α decay (53.3 ms); no γ observed in coincidence with α feeding this level (2004Ra28).			

Adopted Levels, Gammas (continued)

179Au Levels (continued)

E(level) [†]	Jπ‡	XREF	Comments
104.9+v? [#] 7	$(7/2^{-})$	В	
151.2+x 4	(7/2 ⁻)	A	J ^{π} : M1 52 γ from (9/2 ⁻) 204+x. HF \approx 12 in α -decay from the 9/2 ⁻ isomer of ¹⁸³ Tl suggests a modest change of angular momentum in α decay without underlying structural change (2004Ra28). This suggests similar structure for the (7/2 ⁻) 151+x and (9/2 ⁻) 204+x levels in ¹⁷⁹ Au.
203.6+x 4	(9/2 ⁻)	A	J^{π} : α decay from $(9/2^{-})^{183}$ Tl(625 keV) is unhindered (HF=1.6 4). The relationship (if any) between this level and the $(9/2^{-})$ 0.0+y level observed in 90 Zr(90 Zr,p γ) is unclear.
242.0+y ^a 9	$(11/2^{-})$	BC	J^{π} : intraband Q 221 γ to (7/2 ⁻) 21+y.
242.6+y [@] 5	$(13/2^{-})$	В	J^{π} : intraband Q 243 γ to (9/2 ⁻) 0+y.
296.9+y [#] 5	$(11/2^{-})$	В	J^{π} : D 297 γ to (9/2 ⁻) 0.0+y; intraband 192 γ to (7/2 ⁻) 105+y.
366.8+y& 10	$(9/2^+)$	В	
387.6+y ^{&} 7	$(13/2^+)$	BC	J^{π} : (E1) 145 γ to (13/2 ⁻) 243+y; 146 γ to (11/2 ⁻) 242+y.
540.5+y ^{&} 9	$(17/2^+)$	BC	J^{π} : intraband Q 153 γ to (13/2 ⁺) 388+y.
574.5+y ^a 10	$(15/2^{-})$	В	J^{π} : intraband Q 333 γ to (11/2 ⁻) 242+y.
583.0+y [#] 5	$(15/2^{-})$	В	J^{π} : intraband Q 286 γ to (11/2 ⁻) 297+y.
592.8+y [@] 7	$(17/2^{-})$	В	
802.4+y ^{&} 10	$(21/2^+)$	BC	J^{π} : intraband Q 262 γ to (17/2 ⁺) 541+y.
950.7+y [#] 7	$(19/2^{-})$	В	
998.1+y ^a 11	$(19/2^{-})$	В	
1024.4+y [@] 9	$(21/2^{-})$	В	
1156.3+y& 11	$(25/2^+)$	BC	
1391.6+y [#] 9	$(23/2^{-})$	В	
1498.2+y ^{<i>a</i>} 12	$(23/2^{-})$	В	
1530.0+y [@] 10	$(25/2^{-})$	В	
1590.7+y ^x 12	$(29/2^+)$	BC	
1899.0+y [#] 10	$(27/2^{-})$	В	
$2057.6 + y^{a} I3$	(27/2)	В	
$2097.8 + y^{\text{cc}} 13$	$(33/2^+)$	BC	
2461.5+y" 12	$(31/2^{-})$	В	
26/1.3+y 14	$(37/2^{+})$	В	
3304.3+y 15	$(41/2^{+})$	В	
3984.2+y 16	$(45/2^+)$	В	
4722.9+y [∞] 17	(49/2 ⁺)	В	
5510.2+y [∞] 20	$(53/2^+)$	В	
6332.2+y? ^{x} 22	$(57/2^+)$	В	
7172.2+y? ^{x} 24	$(61/2^+)$	В	

 † From least-squares fit to Ey, except as noted.

[‡] Values given without comment are from (90 Zr,p γ) and based on deduced band structure, transition multipolarities, $i_{13/2}$ band alignment and analogy to very similar structures in neighboring odd-A Au isotopes.

[#] Band(A): $\alpha = -1/2$ band.

^(a) Band(B): $(\pi h_{9/2})$, $\alpha = +1/2$ band. 1/2[541] proton intruder band. Band parameters: A=41, B=+44, B_{2K}=+1935, a=+4.9 (J=9/2 through 25/2).

& Band(C): $(\pi i_{13/2}), \alpha = +1/2$ band. 1/2[660] proton intruder band. Alignment ($\approx 6\hbar$) at low frequencies is same as for this band

Adopted Levels, Gammas (continued)

¹⁷⁹Au Levels (continued)

 $\gamma(^{179}\mathrm{Au})$

in ¹⁸¹Au, ¹⁸³Au and ¹⁸⁵Au. Absence of signature partner suggests large signature splitting, as expected for low-K, prolate band. Band parameters: A=33, B=+16, B_{2K}=+990, a=+8.8 (J=9/2 through 25/2).

^{*a*} Band(D): $\pi = (-)$, $\alpha = -1/2$ band. Possibly favored π f_{7/2} mixed with unfavored π h_{9/2}. Band parameter: A=11.5.

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$	Mult. [‡]	α@	Comments
61.8+x	(3/2 ⁻)	61.8 [#] 3	100 [#]	0.0	(1/2+,3/2+)	E1	0.305 6	Mult.: from intensity balance at 62+x level in ¹⁸³ Tl α decay (53.3 ms).
151.2+x	(7/2 ⁻)	89.4 [#] 2	100#	61.8+x	(3/2 ⁻)	(E2)	8.37 15	Mult.: from ¹⁸³ Tl α decay based on characteristics of ce- α summing, low observed I(K x ray) and intensity balance arguments.
203.6+x	(9/2 ⁻)	52.4 [#] 2	100 [#]	151.2+x	(7/2 ⁻)	M1	8.58 16	Mult.: from $\alpha(\exp)$ based in intensity balance and from characteristics of ce- α summing in ¹⁸³ Tl α decay (53.3 ms).
242.0+y	$(11/2^{-})$	220.8 5	100	21.2+y	$(7/2^{-})$	(E2)	0.268 5	
242.6+y	$(13/2^{-})$	242.6 5	100	0.0+y	$(9/2^{-})$	(E2)	0.197	
296.9+y	$(11/2^{-})$	192.0 ^{&} 5	<21	104.9+y?	$(7/2^{-})$ $(9/2^{-})$	D		
366 8+v	$(9/2^+)$	350.2.5	100 10	16 6+v	()/2)	D		
387.6+y	$(13/2^+)$	145.0 5	63 4	242.6+y	(13/2 ⁻)	(E1)	0.162 3	Other I γ : 67 7 in 104 Ru(⁷⁸ Kr,2np γ).
								Mult.: from $\alpha(\exp)$ deduced in ¹⁴⁹ Sm(³⁵ Cl.5ny).
		145.6 5	100 6	242.0+y	(11/2 ⁻)			Other I γ : 100 9 in ¹⁰⁴ Ru(⁷⁸ Kr,2np γ).
		371.0 5	68 <i>5</i>	16.6+y				Other I γ : 190 <i>16</i> from recoil-decay tagged spectrum in (⁹⁰ Zr,p γ); 104 <i>12</i> in ¹⁰⁴ Ru(⁷⁸ Kr,2np γ).
								Mult.: anisotropy in $({}^{90}$ Zr,p γ) consistent with $\Delta J=2$ or D, $\Delta J=0$.
540.5+y	(17/2 ⁺)	152.9 5	100	387.6+y	(13/2 ⁺)	E2	0.976 <i>19</i>	Mult.: Q from γ anisotropy in $({}^{90}\text{Zr}, p\gamma)$; not M2 from $\alpha(\exp)$ in ${}^{149}\text{Sm}({}^{35}\text{Cl}, 5n\gamma)$.
574.5+y	$(15/2^{-})$	332.5 5	100	242.0+y	$(11/2^{-})$	(E2)	0.0758	
583.0+y	$(15/2^{-})$	286.1 5	100 8	296.9+y	$(11/2^{-})$	(E2)	0.1180 18	Other I γ : 100 12 in 104 Ru(78 Kr 2nn γ)
		340.3 5	20 5	242.6+y	(13/2 ⁻)			Other I γ : 37 7 in 104 Ru(78 Kr,2np γ).
592.8+y	$(17/2^{-})$	350.2 5	100	242.6+y	$(13/2^{-})$			
802.4+y	$(21/2^+)$	261.9 5	100	540.5+y	$(17/2^+)$	(E2)	0.1548 24	
950.7+y	$(19/2^{-})$	357 ^{&}		592.8+y	$(17/2^{-})$			
		367.7 5	100 6	583.0+y	$(15/2^{-})$	(E2)	0.0572	
998.1+y	$(19/2^{-})$	423.6 5	100	574.5+y	$(15/2^{-})$	(E2)	0.0392	
1024.4+y	$(21/2^{-})$	431.6 5	100	592.8+y	$(17/2^{-})$	(E2)	0.0373	
1156.3+y	$(25/2^{+})$	353.9 5	100	802.4+y	$(21/2^{\circ})$	(E2)	0.0636	
1391.0+y 1498.2±v	(23/2)	440.9 3 500 1 5	100	930.7+y 998.1±v	(19/2) $(19/2^{-})$	(E2)	0.0353	
1 1 7 U . 2 I Y	(43/4)	500.1 5	100	Y	(1)4]			

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

					$\gamma(^{179}\text{Au})$ (continued)			
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α [@]	
1530.0+y	$(25/2^{-})$	505.6 5	100	1024.4+y	$(21/2^{-})$			
1590.7+y	$(29/2^+)$	434.4 5	100	1156.3+y	$(25/2^+)$	(E2)	0.0367	
1899.0+y	$(27/2^{-})$	507.4 5	100	1391.6+y	$(23/2^{-})$			
2057.6+y	$(27/2^{-})$	559.4 5	100	1498.2+y	$(23/2^{-})$			
2097.8+y	$(33/2^+)$	507.1 5	100	1590.7+y	$(29/2^+)$			
2461.5+y	$(31/2^{-})$	562.5 5	100	1899.0+y	$(27/2^{-})$	(E2)	0.0195	
2671.3+y	$(37/2^+)$	573.5 5	100	2097.8+y	$(33/2^+)$	(E2)	0.0187	
3304.3+y	$(41/2^+)$	633.0 5	100	2671.3+y	$(37/2^+)$	(E2)	0.01491	
3984.2+y	$(45/2^+)$	679.9 5	100	3304.3+y	$(41/2^+)$	(E2)	0.01274	
4722.9+y	$(49/2^+)$	738.7 5	100	3984.2+y	$(45/2^+)$			
5510.2+y	$(53/2^+)$	787.3	100	4722.9+y	$(49/2^+)$			
6332.2+y?	$(57/2^+)$	822 <mark>&</mark>	100	5510.2+y	$(53/2^+)$			
7172.2+y?	$(61/2^+)$	840 <mark>&</mark>	100	6332.2+y?	$(57/2^+)$			

[†] From mass-gated spectra in 90 Zr(90 Zr,p γ), except as noted. [‡] Based on γ anisotropy data in 90 Zr(90 Zr,p γ), except as noted, assigning $\Delta \pi$ =(no) for intraband transitions. [#] From 183 Tl α decay (53.3 ms).

^(a) Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

& Placement of transition in the level scheme is uncertain.

¹⁷⁹₇₉Au₁₀₀

Adopted Levels, Gammas

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $-- \rightarrow \gamma$ Decay (Uncertain)

Adopted Levels, Gammas

 $^{179}_{79}{\rm Au}_{100}$