¹⁸³Tl α decay (53.3 ms) 2004Ra28,1987To09,1980Sc09

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 110, 265 (2009)	15-Nov-2008

Parent: ¹⁸³Tl: E=625 7; $J^{\pi}=(9/2^{-})$; $T_{1/2}=53.3$ ms 3; $Q(\alpha)=6058$ 9; % α decay=1.5 3

¹⁸³Tl-%α decay: From mother-daughter intensity relations (2006An11). other Branching data:~1.5% (tentative value based on one correlated 7000α(¹⁸⁷Bi)-6380α(¹⁸³Tl) event) (1999Ba45). 2004Ra28 estimate %α≈2 based on total Iα compared with Iγ for the delayed 347γ feeding the 9/2⁻ isomer of ¹⁸³Tl.

Other: 2006An11.

2004Ra28:¹⁸³Tl from ¹⁴⁴Sm(⁴²Ca,p2n γ) At E=195 and 200 MeV using 95% enriched ¹⁴⁴Sm target; RITU gas separator; fusion evaporation residues implanted In Si strip detector In focal plane; 3 NORDBALL- and 2 TESSA-type Ge detectors; measured E α , I α , E γ , I γ , prompt γ - α (¹⁸³Tl) coin, $\gamma\gamma$ coin. Supersedes 2002JeZY.

 $T_{1/2}(183TL)=53.3 \text{ ms } 3$ from fit to time difference between pairs of decay α 's and recoils, using an exponential fit to the decay curve and assuming an exponential background (2004Ra28). Other: 60 ms 15 from 1980Sc09.

Parent J^{π} from evaluation In 2002Ba19.

Parent E: from E α =7612 5 to ¹⁸³Tl(g.s.) and E α =7000 5 to 53 ms ¹⁸³Tl In ¹⁸⁷Bi(9/2⁻) α decay (2006An11).

The Q(α)=5940 17 given In 2003Au03 assumed that a 6449 α fed the ¹⁷⁹Au g.s. the γ data of 2004Ra28 are inconsistent with this assumption. based on the adopted E α =6338 6 from 625 7 level In ¹⁸³Tl to 203.6+x level In ¹⁷⁹Au, Q(α)=6058+x 9, where x is the energy difference, if any, between the ¹⁷⁹Au g.s. and the 0+x level At which the 52 γ -89 γ -62 γ cascade observed by 2004Ra28 In α decay terminates.

To identify the ¹⁸³Tl α decays, 2004Ra28 performed a correlation with subsequent ¹⁷⁹Au α decays within a search time of 1 s; this revealed the existence of a new E α =5810 15 branch from ¹⁷⁹Au.

179Au Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0+x	$(1/2^+, 3/2^+, 5/2^+)$		J^{π} : 2004Ra28 suggest (5/2 ⁺).
61.8+x <i>3</i>	(3/2 ⁻)		E(level): an alternative value of $89.4+x$ is possible because order of $62\gamma-89\gamma$ cascade has not been firmly established.
			J^{π} : 2004Ra28 suggest (3/2 ⁻).
86+x 13		>100 µs	$\%$ IT=?; $\%\varepsilon + \%\beta^+$ =?; $\%\alpha$ =?
			E(level): from difference In adopted values of $E\alpha$ to this level and $E\alpha$ to 203.6+x level.
			$T_{1/2}$: from 2004Ra28; No γ observed In coincidence with α feeding this level.
151.2+x 4	(7/2 ⁻)		J ^{π} : 2004Ra28 suggest (7/2 ⁻). HF is consistent with a moderate angular momentum change In α decay without underlying structural change; this suggests similar structure for the (7/2 ⁻) and (9/2 ⁻) levels In ¹⁷⁹ Au.
203.6+x 4	(9/2 ⁻)		J ^{π} : 2004Ra28 suggest (9/2 ⁻) based on unhindered α decay from (9/2 ⁻) parent.

[†] Based on measured E γ , except As noted. the energy offset 'x' allows for the possibility that the level fed by the 62 γ might not Be the g.s.

[‡] From Adopted Levels. Authors' suggested values, based on deduced transition multipolarities and an assumption that J values decrease with decreasing level energy, are given In comments on the relevant levels.

α radiations

Eα	E(level)	$I\alpha^{\dagger \#}$	HF^{\ddagger}	Comments
6338 6	203.6+x	83 4	1.6 4	Eα: weighted average of 6333 10 (2004Ra28), 6340 15 (1987To09), 6343 10 (1980Sc09). this Eα implies $Q(\alpha)(^{183}Tl)=6058+x$ 9 (cf. 5940 17 In 2003Au03 where the 6453α is assumed to feed the ¹⁷⁹ Au g.s.).
6381 11	151.2+x	16 2	12 3	E α : weighted average of 6384 <i>16</i> (2004Ra28), 6378 <i>15</i> (1980Sc09).

Continued on next page (footnotes at end of table)

From ENSDF

$^{183}\mathrm{Tl}\,\alpha$ decay (53.3 ms) 2004Ra28,1987To09,1980Sc09 (continued)

α radiations (continued)

Εα	E(level)	$I\alpha^{\dagger \#}$	HF^{\ddagger}	Comments
6453 11	86+x	1.0 3	3.6×10 ² 14	other I α : 16 4 (2004Ra28). E α : weighted average of 6456 15 (2004Ra28), 6449 15 (1980Sc09). other I α : 4 2 (2004Ra28).

[†] From 1980Sc09. I α data from 2004Ra28 (given In comments) are In excellent agreement, but a little less precise. [‡] Assuming r₀=1.513 *9* (unweighted average of r₀(¹⁸⁰Hg)=1.505 *13* and r₀(¹⁷⁸Pt)=1.522 *5* (1998Ak04)) and Q(α)=6058 *9*. [#] For absolute intensity per 100 decays, multiply by 0.015 *3*.

 $\gamma(^{179}\mathrm{Au})$

I γ normalization: 0.061 2, assuming Ti(62)/I α (total)=0.99.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	$\alpha^{@}$	Comments
52.4 2	109 10	203.6+x	(9/2 ⁻)	151.2+x	(7/2 ⁻)	M1	8.58 16	$\alpha(L)=6.60 \ 12; \ \alpha(M)=1.53 \ 3; \\ \alpha(N+)=0.456 \ 9 \\ \alpha(N)=0.382 \ 7; \ \alpha(O)=0.0701 \ 13; \\ \alpha(P)=0.00473 \ 9 \\ 52\gamma \ is \ In \ prompt \ coincidence \ with \ both \ the \ 89\gamma \ and \ the \ 62\gamma. \ Placement \ is \ supported \ by \ 6384\alpha \ and \ 6333\alpha \ energy \ difference \ of \ 51 \ 19 \ (2004Ra28). \\ Mult.: \ \alpha(exp)=11.5 \ 14 \ (based \ on \ I\alpha=83\% \ 4 \ and \ adopted \ \gamma \ normalization) \ rules \ out \ E1 \ and \ E2. \ Observed \ ce(L)-\alpha \ summing \ In \ spectrum \ gated \ by \ 89\gamma \ is \ consistent \ with \ M1 \ or \ E2 \ (2004Ra28). \\ \end{cases}$
61.8 <i>3</i>	1233 35	61.8+x	(3/2-)	0.0+x	(1/2+,3/2+,5/2+)	E1	0.305 6	α (L)=0.235 5; α (M)=0.0550 11; α (N+)=0.0157 3 α (N)=0.0134 3; α (O)=0.00223 5; α (P)=8.34×10 ⁻⁵ 15 Mult.: intensity balance At 62+x level rules out E2 and M1 and higher order multipolarity for the 62 α
89.4 2	124 11	151.2+x	(7/2 ⁻)	61.8+x	(3/2-)	(E2)	8.37 15	and pointly into 6.7. $\alpha(K)=0.682\ 10; \ \alpha(L)=5.76\ 11;$ $\alpha(M)=1.50\ 3; \ \alpha(N+)=0.427\ 8$ $\alpha(N)=0.368\ 7; \ \alpha(O)=0.0589\ 11;$ $\alpha(P)=0.0001272\ 20$ Mult.: probably E2. Observed shape of summed α spectrum when gated by 52γ is consistent with ce(L)(89)- α summing; E1 would give negligible ce- α summing, M1 would lead to different shape due to dominance of ce(K) over ce(L). also, M1 is ruled out by the observed low I(K x ray) (2004Ra28) and E1 by intensity balance At the 62+x level.

[†] From 2004Ra28.

¹⁸³Tl α decay (53.3 ms) 2004Ra28,1987To09,1980Sc09 (continued)

$\gamma(^{179}\text{Au})$ (continued)

[±] The 52 γ -62 γ and 52 γ -89 γ coincidences are prompt and none of the 52 γ , 62 γ and 89 γ appears to Be delayed with respect to α 's, so 2004Ra28 conclude that the gammas have multipolarity No higher than E1, M1 or E2.

[#] For absolute intensity per 100 decays, multiply by 0.00091 19.

^(a) Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁸³Tl α decay (53.3 ms) 2004Ra28,1987To09,1980Sc09

4