149 Sm(35 Cl,5n γ) 2004So08

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Coral M. Baglin	NDS 110, 265 (2009)	15-Nov-2008				

E=180 MeV; enriched ¹⁴⁹Sm target with Pb backing; γ detector array (13 HPGe detectors with BGO anti-Compton shields, three LOAX detectors for low-energy γ rays), detectors At 90°, 72°, 35°; measured E γ , I γ , $\gamma\gamma(t)$, x- $\gamma(t)$, excit (E=164, 178, 180 MeV). reliable DCO ratios could not Be extracted due to poor statistics.

¹⁷⁹Au Levels

E(level) [†]	$J^{\pi \ddagger}$
0.0+y	$(9/2^{-})^{\#}$
21.5+y [@] 15	$(7/2^{-})^{\#}$
242.0+y [@] 10	$(11/2^{-})^{\#}$
387.0+y ^{&} 15	$(13/2^+)$
539.5+y ^{&} 18	$(17/2^+)$
801.0+y ^{&} 20	$(21/2^+)$
1154.5+y ^{&} 23	$(25/2^+)$
1588.5+y ^{&} 25	$(29/2^+)$
2095+y ^{&} 3	$(33/2^+)$

[†] From $E\gamma$, assigning an uncertainty of 1 keV to all data.

[‡] Authors' values.
[#] From Adopted Levels.

^(a) Band(A): π =- band fragment.

& Band(B): ($\pi i_{13/2}$), $\alpha = +1/2$ band. 1/2[660] proton intruder band; assignment supported by observed alignment (5.5 \hbar). see 2004So20 for discussion of the systematic properties of 1/2[660] bands In odd-A Au nuclei.

$\gamma(^{179}{\rm Au})$

E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α #	Comments
145.0	387.0+y	(13/2+)	242.0+y	(11/2 ⁻)	(E1)	0.1619	transition is presumably a doublet feeding both the $(11/2^-)$ state shown here and the $(13/2^-)$ state in Adopted Levels, Gammas which the E2 242 γ deexcites.
							Mult.: based on authors' estimate (unstated) of $\alpha(exp)$.
152.5	539.5+y	(17/2+)	387.0+y	(13/2+)	(E2)	0.985	Mult.: $\alpha(\exp)=0.9$, assuming Ti(261.5 γ)=Ti(152.5 γ) In spectrum gated on 353.5 γ and adopted mult(261.5 γ)=(E2); rules out E1 and M2.
220.5	242.0+y	$(11/2^{-})$	21.5+y	$(7/2^{-})$			
242.0	242.0+y	(11/2 ⁻)	0.0+y	(9/2 ⁻)			placement not adopted; it differs from that In Adopted Levels, Gammas where this γ deexcites a (13/2 ⁻) level with almost identical energy.
261.5	801.0+y	$(21/2^+)$	539.5+y	$(17/2^+)$			
353.5	1154.5+y	$(25/2^+)$	801.0+y	$(21/2^+)$			
434.0	1588.5+y	$(29/2^+)$	1154.5+y	$(25/2^+)$			
506.5	2095+y	$(33/2^+)$	1588.5+y	$(29/2^+)$			

[†] From 2004So08; uncertainties unstated by authors.

 ‡ Authors do not report any I γ data but claim that observed intensity balance At each level is consistent with multipolarities

¹⁴⁹Sm(³⁵Cl,5nγ) 2004So08 (continued)

 $\gamma(^{179}\text{Au})$ (continued)

implied by their level scheme.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁴⁹Sm(³⁵Cl,5nγ) 2004So08

Level Scheme

(33/2+)	306.5					2095+y
(29/2+)		0. ₈₆ 8				1588.5+y
(25/2+)		333.5				1154.5+y
(21/2+)			261.5	&		801.0+y
(17/2 ⁺)				(S)	(ja	539.5+y
$(13/2^+)$				× ×	<u> </u>	387.0+y
$(11/2^{-})$					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	242.0+y
(7/2 ⁻) (9/2 ⁻)						21.5+y 0.0+y

¹⁷⁹₇₉Au₁₀₀

¹⁷⁹₇₉Au₁₀₀