¹⁷⁸Re ε decay **2001Ki10,1970Go20**

	History			
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	E. Achterberg, O. A. Capurro, G. V. Marti	NDS 110, 1473 (2009)	31-May-2008	

Parent: ¹⁷⁸Re: E=0; $J^{\pi}=(3^+)$; $T_{1/2}=13.2 \text{ min } 2$; $Q(\varepsilon)=4.76\times10^3 3$; $\%\varepsilon+\%\beta^+$ decay=100.0

 178 Re-T_{1/2} from 2003Au02, Q(β^+) from 2003Au03.

2001Ki10: ¹⁷⁸Re isotope formed in the ¹⁷³Yb(¹¹B,6n) reaction at E=73 MeV, and also obtained from the decay chain of ¹⁷⁸Ir isotope formed in the ¹⁶⁴Er(¹⁹F,5n) reaction at E=110 MeV. Measured E γ , I γ , $\gamma\gamma$, $\gamma\gamma(t)$, $\gamma\gamma(\theta)$, ce using the CAESAR array consisting of six Compton-suppressed Ge detectors, and a superconducting solenoid spectrometer for electrons.

1970Go20: Sources of ¹⁷⁸Re produced by the ¹⁸¹Ta(³He,xn) and W(p,xn) reactions at E=72 and 54 MeV, respectively. Measured E γ , I γ , $\gamma\gamma$ coin, $\beta\gamma$ coin, E(ce), Ice. Detectors: Ge(Li), scin, Si(Li).

¹⁷⁸W Levels

E(level) [†]	\mathbf{J}^{π}	Comments
0.0‡	0^{+}	
106.03 [‡] 11	2^{+}	
343.01 [‡] <i>12</i>	4+	
694.58 [‡] 15	6+	
1044.82 ^{&} 17	2-	
1082.62 [@] 14	2+	J ^{π} : From E0 component in 976-keV γ -ray to $J^{\pi}=2^+$ 106-keV level.
1110.65 [#] 13	2+	J^{π} : From E0 component in 1004.6 γ -ray to $J^{\pi}=2^+$ 106-keV level.
1120.54 ^{&} 17	3-	
1225.70 ^{&} 19	4^{-}	
1236.70 [#] 16	3+	
1275.39 [@] 15	4+	J ^{π} : From E0 component in 932-keV γ -ray to $J^{\pi}=4^+$ 342-keV level.
1294.57 ^a 15	0^{+}	J^{π} : From decay by E0 1294-keV γ -ray to $J^{\pi}=0^+$ g.s.
1345.01 ^{&} 17	5-	
1380.41 [#] 16	4+	J ^{π} : From E0 component in 1037-keV γ -ray to J ^{π} =4 ⁺ 342-keV level.
1417.79 ^a 14	2+	J ^{π} : From E0 component in 1311-keV γ -ray to J ^{π} =2 ⁺ 106-keV level.
1449.48 14	2+	
1545.05	6+	
1550.26 20	5+	
1572.75 19 1598.02^{a} 18	$\frac{3}{4^{+}}$	I^{π} . From EQ component in 1255-keV γ -ray to $I^{\pi}=4^+$ 342-keV level
1641.68 19		$3 \cdot 110 \text{ m/E0 component m/1255 keV y ray to 3 = 1 \cdot 512 \text{ keV reven.}$
1703.94 16	4+	
1718.27 15	4+	
1728.6 3		
1864 2 4	(4^{+})	
1939.41 24	(.)	
1962.9 <i>3</i>		
1997.43 18		
2121.32 24		
3369.1.3	(2^{+})	
3383.4 5	(_)	
3499.5 4		
3505.9 5		
3512.1 4 3515 2 5	(2^{+})	
3551.2 4	(2)	

¹⁷⁸Re ε decay **2001Ki10,1970Go20** (continued)

¹⁷⁸W Levels (continued)

E(level) [†]	$E(level)^{\dagger}$	E(level) [†]
3580.4 <i>5</i> 3585.7 <i>5</i>	3595.0 <i>5</i> 3634.6 <i>5</i>	3706.5 5 3807.3 4 3810.9 5

[†] From least-squares fit to $E\gamma's$.

[‡] Band(A): g.s. band.

[#] Band(B): γ band.

[@] Band(C): β band.

& Band(D): $K^{\pi}=2^{-}$ band.

^{*a*} Band(E): $K^{\pi}=0^+$ band.

ε, β^+ radiations

I(ε+ β^+) deduced by the evaluators from the total transition intensity balances at each level, using the intensity data from 2001Ki10, and those from 1970Go20, where no data from 2001Ki10 were available. No levels have been established in the region 2.1 to 3.3 MeV by these β decay studies. This suggests that the intensity balances, and consequent β feedings and deduced log *ft* values, should be regarded with caution, as there may be unobserved γ -ray intensity leading to changes in the β feedings listed below. However these unobserved intensities are assumed to be rather small, as all known levels in the mentioned gap have J values of 8 or higher (see Adopted Levels dataset), and therefore any β feeding can be expected to be very small.

E(decay)	E(level)	Iβ ⁺ †‡	$I\varepsilon^{\dagger\ddagger}$	Log ft	$\mathrm{I}(\varepsilon\!+\!\beta^+)^\ddagger$	Comments
$(9.5 \times 10^2 \ 3)$	3810.9		0.37 12	6.52 15	0.37 12	εK=0.8087 7; εL=0.1456 5; εM+=0.04563 19
$(9.5 \times 10^2 \ 3)$	3807.3		0.37 12	6.52 15	0.37 12	εK=0.8088 7; εL=0.1456 5; εM+=0.04561 19
$(1.05 \times 10^3 \ 3)$	3706.5		0.34 8	6.65 11	0.34 8	εK=0.8108 6; εL=0.1441 4; εM+=0.04507 15
$(1.13 \times 10^3 \ 3)$	3634.6		0.71 15	6.39 10	0.71 15	εK=0.8120 5; εL=0.1432 4; εM+=0.04474 13
$(1.17 \times 10^3 \ 3)$	3595.0		0.47 15	6.60 14	0.47 15	εK=0.8126 5; εL=0.1428 4; εM+=0.04458 12
$(1.17 \times 10^3 \ 3)$	3585.7		0.36 12	6.72 15	0.36 12	εK=0.8127 5; εL=0.1427 4; εM+=0.04455 12
$(1.18 \times 10^3 \ 3)$	3580.4		0.39 10	6.69 12	0.39 10	εK=0.8128 5; εL=0.1427 4; εM+=0.04453 12
$(1.21 \times 10^3 \ 3)$	3551.2		1.9 2	6.03 6	1.9 2	εK=0.8132 4; εL=0.1424 3; εM+=0.04442 11
$(1.24 \times 10^3 \ 3)$	3515.2		0.49 15	6.64 14	0.49 15	εK=0.8137 4; εL=0.1420 3; εM+=0.04429 11
$(1.25 \times 10^3 \ 3)$	3512.1		1.56 25	6.14 8	1.56 25	εK=0.8137 4; εL=0.1420 3; εM+=0.04428 11
$(1.25 \times 10^3 \ 3)$	3505.9		0.36 10	6.78 13	0.36 10	εK=0.8138 4; εL=0.1419 3; εM+=0.04426 11
$(1.26 \times 10^3 \ 3)$	3499.5		0.75 19	6.47 12	0.75 19	εK=0.8138 4; εL=0.1419 3; εM+=0.04424 11
$(1.38 \times 10^3 \ 3)$	3383.4		0.50 14	6.73 13	0.50 14	εK=0.8149 3; εL=0.14091 24; εM+=0.04388 9
$(1.39 \times 10^3 \ 3)$	3369.1		1.4 <i>3</i>	6.29 10	1.4 3	εK=0.8150 3; εL=0.14080 24; εM+=0.04384 9
$(1.46 \times 10^3 \ 3)$	3301.3		1.1 3	6.44 12	1.1 3	εK=0.8154 2; εL=0.14028 23; εM+=0.04365 9
$(2.64 \times 10^3 \ 3)$	2121.32	0.055 11	0.63 12	7.21 9	0.68 13	av Eβ=735 14; εK=0.756 4; εL=0.1253 7; εM+=0.03877 21
$(2.76 \times 10^3 \ 3)$	1997.43	0.08 1	0.7 1	7.19 6	0.8 1	av Eβ=790 14; εK=0.740 4; εL=0.1225 8; εM+=0.03789 23
$(2.80 \times 10^3 \ 3)$	1962.9	0.052 10	0.44 8	7.42 8	0.49 9	av Eβ=805 14; εK=0.735 5; εL=0.1217 8; εM+=0.03762 24
$(2.82 \times 10^3 \ 3)$	1939.41	0.024 9	0.20 7	7.78 16	0.22 8	av Eβ=816 14; εK=0.732 5; εL=0.1211 8; εM+=0.03744 24
$(2.90 \times 10^3 \ 3)$	1864.2	0.17 6	1.2 4	7.00 16	1.4 5	av Eβ=849 14; εK=0.721 5; εL=0.1192 8; εM+=0.03685 25
$(3.00 \times 10^3 \ 3)$	1764.4	0.08 3	0.50 16	7.42 15	0.58 19	av Eβ=893 14; εK=0.706 5; εL=0.1165 9; εM+=0.0360 3
$(3.03 \times 10^3 3)$	1728.6	0.083 12	0.48 7	7.45 7	0.56 8	av E β =909 14; ε K=0.701 5; ε L=0.1155 9; ε M+=0.0357 3

Continued on next page (footnotes at end of table)

¹⁷⁸Re ε decay **2001Ki10,1970Go20** (continued)

$I\varepsilon^{\dagger\ddagger}$ $I\beta^+$ ^{†‡} $I(\varepsilon + \beta^+)^{\ddagger}$ E(decay) E(level) Log *ft* Comments $(3.04 \times 10^3 3)$ 1718.27 0.35 6 2.0 3 2.3 4 av E_β=914 14; εK=0.699 5; εL=0.1152 9; εM+=0.0356 6.84 8 3 $(3.06 \times 10^3 \ 3)$ 1703.94 0.31 6 1.7 3 6.91 9 2.0 4 av Eβ=920 14; εK=0.697 5; εL=0.1148 9; εM+=0.0355 3 $(3.12 \times 10^3 \ 3)$ 1641.68 0.18 3 0.92 17 7.198 1.1 2 av E β =948 14; ε K=0.687 5; ε L=0.1131 9; ε M+=0.0349 3 $(3.16 \times 10^3 \ 3)$ 1598.02 0.54 7 2.6 3 6.76 6 3.1 4 av E β =968 14; ε K=0.679 6; ε L=0.1118 9; ε M+=0.0346 3 $(3.19 \times 10^3 3)$ 1572.75 0.14 4 0.7 2 7.36 11 0.8 2 av Eβ=979 14; εK=0.675 6; εL=0.1111 9; εM+=0.0343 3 $(3.20 \times 10^3 \ 3)$ 1556.28 0.09 2 0.4 1 7.57 9 0.5 1 av E_β=986 14; εK=0.672 6; εL=0.1106 9; εM+=0.0342 3 $(3.21 \times 10^3 \ 3)$ 1545.8 0.28 7 1.2 3 7.10 12 1.5 4 av Eβ=991 14; εK=0.670 6; εL=0.1103 9; εM+=0.0341 3 $(3.31 \times 10^3 \ 3)$ 1449.48 6.79 7 3.3 5 0.68 11 2.6 4 av E_β=1034 14; εK=0.653 6; εL=0.1074 10; €M+=0.0332 3 $(3.34 \times 10^3 \ 3)$ 1417.79 0.43 7 1.6 2 7.02 7 2.0 3 av E_β=1048 14; εK=0.648 6; εL=0.1064 10; €M+=0.0329 3 $(3.38 \times 10^3 \ 3)$ 1380.41 0.58 9 2.0 3 6.92 7 2.6 4 av E_β=1065 14; εK=0.641 6; εL=0.1052 10; *ε*M+=0.0325 *3* $(3.41 \times 10^3 3)$ 1345.01 0.44 7 1.5 2 7.07 7 1.9 3 av Eβ=1081 14; εK=0.634 6; εL=0.1041 10; ε M+=0.0322 *3* $(3.47 \times 10^3 \ 3)$ 1294.57 0.07 2 0.2 1 7.89 15 0.3 1 av Eβ=1104 14; εK=0.625 6; εL=0.1026 10; €M+=0.0317 3 $(3.48 \times 10^3 \ 3)$ 1275.39 0.71 12 2.2 4 6.92 8 2.9 5 av E β =1112 14; ε K=0.622 6; ε L=0.1020 10; $\varepsilon M+=0.0315 \ 3$ $(3.52 \times 10^3 \ 3)$ 1236.70 0.43 10 av E_β=1130 14; εK=0.614 6; εL=0.1007 10; 1.3 3 7.16 11 1.7 4 *ε*M+=0.0311 *3* $(3.53 \times 10^3 \ 3)$ 1225.70 0.2 1 0.5 2 7.55 19 0.7 3 av Eβ=1135 14; εK=0.612 6; εL=0.1004 10; €M+=0.0310 3 $(3.64 \times 10^3 \ 3)$ 1120.54 1.3 1 3.4 4 6.77 5 4.7 5 av Eβ=1182 14; εK=0.592 6; εL=0.0970 10; €M+=0.0300 3 $(3.65 \times 10^3 \ 3)$ 1110.65 0.45 6 1.15 14 7.24 6 1.60 20 av E_β=1187 14; εK=0.590 6; εL=0.0967 10; *ε*M+=0.0299 *3* $(3.68 \times 10^3 \ 3)$ 1082.62 0.38 3 0.92 7 7.34 4 1.3 1 av Eβ=1199 14; εK=0.585 6; εL=0.0958 10; *ε*M+=0.0296 *3* $(3.72 \times 10^3 \ 3)$ 1044.82 1.7 2 4.16 6.707 5.88 av E_β=1216 14; εK=0.578 6; εL=0.0946 10; *ε*M+=0.0292 *3* $(4.07 \times 10^3 \ 3)$ 694.58 0.99 1.6 16 7.2 5 2.5 25 av E\u03b3=1375 14; \u03c6K=0.511 6; \u03c6L=0.0835 10; *ε*M+=0.0258 *3* $(4.42 \times 10^3 \ 3)$ 343.01 10 2 12 2 6.39 8 22 4 av Eβ=1535 14; εK=0.447 6; εL=0.0728 9; *ε*M+=0.0225 *3* $E\beta = 3.30 \ 18 \text{ (measured in coin with } 237.3\gamma)$ (1970Go20). Other: 3.1 (1957Ha04). $(4.65 \times 10^3 \ 3)$ 106.03 10 5 94 6.54 21 199 av E_β=1644 14; εK=0.407 5; εL=0.0661 9; $\varepsilon M + = 0.0204 \ 3$

ϵ, β^+ radiations (continued)

[†] Values obtained using theoretical ε/β^+ ratios.

[‡] Absolute intensity per 100 decays.

 $\gamma(^{178}W)$

I γ normalization: From decay scheme assuming $\Sigma I(\gamma + ce)(g.s.) = 100\%$.

4

Experimental restrictions in 2001Ki10 did not allow detecting transitions higher than $E\gamma \approx 1.9$ MeV. Some observed, but unplaced, transitions of 1970Go20 have been placed by 2001Ki10 in the level scheme. All experimental conversion and $\gamma - \gamma$ directional correlation coefficients are from 2001Ki10, except when otherwise noted. Quoted relative γ -ray intensities from 2001Ki10 have been normalized to the I γ (237) value from 1970Go20.

E_{γ}^{\dagger}	$I_{\gamma}^{@c}$	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [‡]	δ#	α^d	Comments
75.7 <mark>&</mark> 2	0.11 ^{&} 6	1120.54	3-	1044.82 2-	M1(+E2)		11.4 10	
106.0 2	24.5 13	106.03	2+	0.0 0+	E2		3.10	Mult.: α (L)exp=2.1 4, α (M)exp+ α (N)exp=0.54 11 (1970Go20).
180.9 2	0.59 7	1225.70	4-	1044.82 2-	(E2)		0.434	
192.5 <mark>&</mark> 2	0.13 ^{&} 3	1275.39	4+	1082.62 2+	E2		0.351	
224.5 <mark>&</mark> 2	0.71 ^{&} 13	1345.01	5-	1120.54 3-	(E2)		0.210	
237.0 2	46.5 13	343.01	4+	106.03 2+	E2		0.176	 The intensity of this transition has been used by the evaluators for normalization of the 2001Ki10 Iγ values to those of 1970Go20. Mult.: A₂=+0.08 2, A₄=+0.02 2 (2001Ki10). α(K)exp=0.12 (1968Be53); α(K)theo=0.1064. Additional information 1.
280.7 <mark>&</mark> 2	0.36 ^{&} 6	1556.28	6^{+}	1275.39 4+	E2		0.1039	
335.3 <mark>&</mark> 2	0.12 ^{&} 3	1417.79	2^{+}	1082.62 2+	(M1,E2)		0.11 5	
351.7 2	5.8 <i>3</i>	694.58	6+	343.01 4+	E2		0.0535	Mult.: from adopted gammas; GS rotational band member.
481.5 <mark>&</mark> 2	0.93 ^{&} 14	1718.27	4+	1236.70 3+	(M1,E2)		0.043 20	
501.0 <mark>b</mark> 2	1.62 9	1545.8		1044.82 2-				
521.2 ^b 2	0.88 19	1641.68		1120.54 3-				
538.7 <mark>b</mark> 2	0.61 7	1764.4		1225.70 4-				
580.8 ^{&} 2	0.56 ^{&} 10	1275.39	4+	694.58 6+	E2		0.01460	
607.7 2	0.44 9	1718.27	4^{+}	1110.65 2+	(E2)		0.01314	
635.7 2	0.60 13	1718.27	4+	$1082.62 \ 2^+$	(E2)		0.01184	
650.4 ⁰ 2	0.70 4	1345.01	5-	694.58 6+	(E1)		0.00409	
683.8 2	0.59 7	1728.6		1044.82 2-				Seen, together with the 685.8 keV γ ray, as a single peak at 684.1 keV in 1970Go20.
685.8 2	0.35 9	1380.41	4+	694.58 6+	(E2)		0.00998	See comment for the 683.8 keV γ ray.
739.7 2	0.24 6	1082.62	2^{+}	343.01 4+	E2		0.00845	Mult.: Transition to $J^{\pi}=4^+$ 343-keV level.
767.8 2	0.40 9	1110.65	2^{+}	343.01 4+	E2		0.00780	Mult.: Transition to $J^{\pi}=4^+$ 343-keV level.
777.6 2	6.0 3	1120.54	3-	343.01 4+	E1(+M2)	+0.02 2	0.00289 7	Mult.: α (K)exp<0.0055 (1970Go20); a(K)exp=0.0068 <i>15</i> , A ₂ =-0.15 <i>6</i> , A ₄ =-0.3 <i>6</i> . Additional information 2.
842.4 <mark>&</mark> 2	0.51 ^{&} 14	1962.9		1120.54 3-				
861.9 <mark>&</mark> 2	0.12 ^{&} 3	1556.28	6+	694.58 6+	(M1,E2)		0.010 4	
878.2 ^{&} 2	0.22 ^{&} 4	1572.75	5+	694.58 6+	(M1,E2)		0.010 4	

					178 Re $arepsilon$ decay	2001Ki10,197	0Go20 (contin	ued)
						$\gamma(^{178}W)$ (continu	ued)	
E_{γ}^{\dagger}	$I_{\gamma}^{@c}$	E _i (level)	\mathbf{J}_i^{π}	E_f J	\int_{f}^{π} Mult. [‡]	$\delta^{\#}$	α^{d}	Comments
882.7 2	0.78 7	1225.70	4-	343.01 4	+ E1		0.00225	Mult.: α (K)exp < 0.002.
893.6 ^{&} 2 932.4 2	0.88 ^{&} 9 2.52 <i>14</i>	1236.70 1275.39	3+ 4+	343.01 4 343.01 4	+ E2 + E0+M1+E2	-6.6 +15-30	0.00566 0.00533 <i>12</i>	Mult.: α (K)exp=0.0048 6. Mult.: α (K)exp=0.061 10 (1970Go20). α (K)exp=0.0176 11, α (L)exp=0.0027 2, α (M)exp=0.0014 2, A ₂ =-0.07 5, A ₄ =+0.14 6. α^{2} (F0(F2)=3.2 2; X(F0(F2)=0.140 12 (2001K;10))
938.8 2	10.4 3	1044.82	2-	106.03 2	+ E1(+M2)		0.015 14	q (E0/E2)=3.2 3; $X(E0/E2)=0.140$ 73 (2001K110). Mult.: $\alpha(K)\exp=0.0056$ 19 (1970Go20). $\alpha(K)\exp=0.00152$ 11, $\alpha(L)\exp=0.00016$ 4, $A_2=+0.17$ 3 (2001K110).
976.5 2	0.40 ^a 15 2.32 13	1082.62	2+	106.03 2	+ E0+M1+E2	-12.3 +28-64	0.00476 8	Mult.: α (K)exp=0.024 <i>6</i> (1970Go20). A ₂ =0.00 <i>6</i> , A ₄ =+0.22 7. α (K)exp=0.0076 5, α (L)exp=0.00110 14, α (M)exp=0.00035 5; q ² (E0/E2)=0.94 13; X(E0/E2)=0.045 6 (2001Ki10).
1002.0 ^{&} 2 1004.6 2	0.39 ^{&} 7 0.41 9	1345.01 1110.65	5- 2 ⁺	343.01 4 106.03 2	+ E1 + E0+M1+E2	>+2	1.78×10 ⁻³ 0.0050 6	Mult.: α (K)exp=0.0025 5. Mult.: α (K)exp=0.0090 8, α (L)exp=0.0010 2. q^{2} (E0/E2)=1.5 3; X(E0/E2)=0.076 +14-13 (2001Ki10).
1009.4 ^{&} 2 1037.4 2	0.34 ^{&} 4 1.63 <i>11</i>	1703.94 1380.41	4+ 4+	694.58 6 343.01 4	+ (E2) + E0+M1+E2	-1.9 +7-12	0.00442 0.0052 <i>9</i>	Mult.: α (K)exp=0.0042 9. Mult.: α (K)exp=0.0051 5, α (L)exp=0.00063 12; A ₂ =+0.14 10, A ₄ =+0.35 11. q ² (E0/E2)=0.7 5; X(E0/E2)=0.014 18 (2001Ki10). Additional information 4
1106.6 2	0.88 12	1449.48	2^{+}	343.01 4	+ E2		0.00369	Mult.: $\alpha(K) \exp = 0.0030 \ 4$.
1110.6 2 1130 7 <mark>b</mark> 2	1.29 7 1.81 <i>13</i>	1110.65 1236 70	2+ 3+	0.0 0	+ E2 + E2+M1	+69+77-24	0.00366	Mult.: α (K)exp=0.00276 <i>17</i> . Mult.: α (K)exp=0.00282 <i>18</i> : A ₂ =-0.07 6
1150.7 2		1250.70		100.05 2		10.9 177 27	0.000001 11	$A_4 = -0.21 \ 8.$
1169.4 2 1169.5 ^{ea} 5	$0.107\ 23$ $0.8^{ea}\ 4$	1275.39 1864.2	4+ (4+)	106.03 2 694.58 6	+ E2 + (E2)		0.00331 0.00331	Additional information 3. Transition doubly placed in 1970Go20, not placed here by 2001Ki10.
1188.7 <mark>&</mark> 2	0.29 ^{&} 9	1294.57	0^{+}	106.03 2	+ (E2)		0.00321	
1229.7 2 1255.1 2	0.63 7 2.19 <i>19</i>	1572.75 1598.02	5+ 4+	343.01 4 343.01 4	+ (M1,E2) + E0+M1+E2		0.0044 <i>14</i> 0.0042 <i>14</i>	Mult.: α (K)exp=0.0101 8, α (M)exp=0.00059 7. q ² (E0/E2)=3.7 +4-9; X(E0/E2)=0.30 +3-7 (2001Ki10)
$1274.4\ 2$	0.75 <i>10</i> 0.5 ^{<i>a</i>} 3	1380.41	4+	106.03 2	+ E2		0.00282	Mult.: $\alpha(K) \exp = 0.0019$ 2.
1294.4 & 2	& &	1294.57	0+	0.0 0	⁺ Е0			I _(γ+ce) : TI=0.024 2, deduced by evaluators from experimental values $\alpha_{\rm K}/\alpha_{\rm L}$ =5.6 8 and Ice(K)=0.044 3 (2001Ki10).

S

L

	¹⁷⁸ Re ε decay 2001Ki10,1970Go20 (continued)								
						<u>.</u>	$\gamma(^{178}W)$ (conti	nued)	
E_{γ}^{\dagger}	$I_{\gamma}^{@c}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α^{d}	Comments	
								$q^{2}(E0/E2)=26\ 2$ and $X(E0/E2)=1.73\ 12\ (2001Ki10)$.	
1298.6 2	0.25 & 7	1641.68		343.01	4+				
1311.5 ^b 2	1.40 19	1417.79	2+	106.03	2+	E0+M1+E2	0.0038 12	Mult.: α (K)exp=0.0149 <i>13</i> , α (L)exp=0.00255 <i>28</i> , α (M)exp=0.00092 <i>12</i> .	
								$q^{2}(E0/E2)=6.9 + 7 - 17; X(E0/E2)=0.61 + 7 - 15.$	
1343.3 2	0.83 16	1449.48	2+ 4+	106.03	2+ 4+	E2	0.00256	Mult.: $\alpha(K) \exp[=0.0018 \ 3.$	
1301.02	0.75 10	1719.07	4	545.01 242.01	4	$(\mathbf{M}1,\mathbf{E}2)$	0.00455	Mult.: $\alpha(K) \exp = 0.0041$ 4.	
$x^{1375.2} = 2^{x}$	0.39^{a} / 0.4 ^a 2	1/18.2/	4'	343.01	4'	(M1,E2)	0.0035 10		
1417.9 ^b 2	0.59 10	1417.79	2+	0.0	0^{+}	E2	0.00233	Mult.: α (K)exp=0.0016 3.	
1449.5 2	1.68 10	1449.48	$2^+_{4^+}$	0.0	0^+	E2	0.00225	Mult.: α (K)exp=0.00172 <i>16</i> .	
$1491.9\ 2$	$1.40\ 23$	1598.02	4'	106.03	21	E2	0.00214	Mult.: $\alpha(K) \exp = 0.00166 \ 16.$	
1499.4° 3 1521 4 ^{<i>a</i>} 10	0.0^{-2} 0.4^{a} 2	1864.2	(4^{+})	343.01	Δ^+	(M1 E2)	0.0028.8		
^x 1580.0 ^a 10	$0.4^{\circ}2$ $0.5^{a}2$	1004.2	(+)	545.01	-	(1411,122)	0.0020 0		
1596.4 ^{&} 2	$0.23^{\&}$ 7	1939.41		343.01	4+				
1597.8 2	1.03 9	1703.94	4+	106.03	2+	(E2)	0.00193		
^x 1608.5 ^a 4	0.7 ^{<i>a</i>} 2								
1654.1 <mark>&</mark> 2	0.65 <mark>&</mark> 9	1997.43		343.01	4+				
^x 1708.2 ^a 4	0.3^{a} 1								
^x 1744.6 ^{<i>a</i>} 5	0.5^{a} 2								
1758.2 ^{<i>a</i>} 6	0.7 ^{<i>u</i>} 2	1864.2	(4^{+})	106.03	2+	(E2)	1.70×10^{-5}		
1778.3° 2	0.66° 13	2121.32		343.01	4+				
$x_{1/95.6}^{a}$ /	0.2^{a} 1								
$x_{1836} 0^{a} 15$	0.7 2 $0.2^{a} 1$								
1891 7 2	0.2°	1997 43		106.03	2^{+}				
^x 1893.3 ^a 8	0.5^{a} 2	1777.43		100.05	2				
^x 1924.7 ^a 8	0.4 ^{<i>a</i>} 2								
^x 2016.3 ^a 8	0.3 ^{<i>a</i>} 1								
2036.5 ^d 8	$0.65^{a} 21$	3634.6		1598.02	4+				
$x_{2053.0}^{a} 8$	0.4^{a} I								
2133.1° 0 2247 8 ^{<i>a</i>} 8	0.0^{-1} 0.43^{a} 15	3360 1	(2^{+})	1120.54	3-	(F1)	1.17×10^{-3}		
x2263.7 ^a 8	0.20^{a} 7	3307.1	(2)	1120.34	5	(L1)	1.1/~10		
2287.0 ^{ea} 6	0.65 ^{ea} 21	3369.1	(2^{+})	1082.62	2^{+}	(M1,E2)	0.00160 25		
2287.0 ^{ea} 6	0.65 ^{ea} 21	3512.1	. ,	1225.70	4-				
^x 2306.6 ^a 8	0.20^{a} 7								
*2312.1 ^a 8	0.4" 1								

6

$^{178}_{74}\mathrm{W}_{104}\text{--}6$

From ENSDF

 $^{178}_{74}\rm{W}_{104}\text{-}6$

L

						178 Re ε decay	y 2001Ki10,1970Go20 (continued)
							$\gamma(^{178}W)$ (continued)
${\rm E_{\gamma}}^{\dagger}$	I_{γ} @c	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f} .	\mathbf{J}_f^{π}	Mult. [‡]	α^d
2324 6 ^{ea} 8	0.43^{ea} 21	3369.1	(2^{+})	1044.82	2-	(F1)	1.20×10^{-3}
2324.0 0	$0.43^{ea} 21$	3551.2	(2)	1225 70	2 4-	(L1)	1.20×10
$x_{2455} 9^{a} 7$	0.45° 21 0.21 ^{<i>a</i>} 7	5551.2		1225.70	т		
$2468.0^{a}.20$	0.43^{a} 21	3551.2		1082.62	2+		
$2957.6^{a}.5$	$1.9^{a} 4$	3301.3		343.01	<u>4</u> +		
$x_{2997.6}^{a}$ 6	0.7^{a} 2	550115		5 15.01	•		
3011.8^{a} 6	0.32^{a} 11	3706 5		694 58	6+		
$3025.0^{a}5$	1.0^{a} 3	3369.1	(2^{+})	343.01	4+		
$3112.3^{a}.5$	0.65^{a} 21	3807.3	(2)	694 58	6+		
$3116.3^{a}.5$	$0.05^{\circ} 21^{\circ}$	3810.9		694 58	6+		
$x_{3133} 6^{a} 5$	0.03 21 0.3^{a} 1	5010.7		074.50	0		
3156.8^{a} 5	$1.3^{a} 4$	3499 5		343.01	4+		
$x_{3164} 0^{a} 6$	0.5^{a} 2	5777.5		545.01	т		
$3168.6^{a}.5$	1.9^{a} 1	3512.1		3/13 01	<u>1</u> +		
$3100.0 \ 5$	1.7 + 0.7a	2515.2	(2^{+})	342.01	 ⊿+	(E2)	1.22×10^{-3}
$x_{3182} 0^{a} 6$	0.7^{-3}	5515.2	(2)	545.01	+	(L2)	1.55×10
$x_{3182.0} 0$	$0.27 \ 8$ $0.54^{a} \ 15$						
3106.0^{a} 5	0.54 15 0.584 17	3301.3		106.03	2+		
$32085^{a}5$	1.6^{a} A	3551.2		3/3 01	∠ ∕1+		
$x_{3217,20}^{x_{3217,20}}$	$0.27\frac{a}{8}$	5551.2		545.01	+		
$x_{3232} 5^{a}_{c} 6$	$0.27 \ 0.21^{a} \ 7$						
$3232.5 \ 0$ $3237.6^{a}.6$	0.21°	3580.4		3/13 01	<u>1</u> +		
3237.0 0 $3242.0^{a}.6$	0.07 21 $0.60^{a} 21$	3585 7		343.01	 ∕1+		
$x_{3247} 5^{a} 6$	0.00 21 0.18^{a} 7	5565.7		545.01	+		
3247.5 0 3251.6 ^{<i>a</i>} 5	0.10^{-7}	3505.0		3/13 01	∕ +		
$x_{3254,20}^{x_{3254,20}}$	$0.9^{\circ} 5^{\circ}$	5595.0		545.01	+		
$x_{3257} 5^{a} 6$	0.36^{-12}						
3257.5 0	0.30 12 0.90 3	3360 1	(2^{+})	106.03	2+		
3203.0 0 $3277.4^{a}.6$	0.9° 3	3383.4	(2)	106.03	$\frac{2}{2^+}$		
$3201.6^{a}.6$	0.0^{-9}	3634.6		3/3 01	2 1+		
3291.0 0 3363 6 ^{<i>a</i>} 6	0.43^{a} 13	3706.5		343.01	 ∕1+		
3360.5^{a} 6	0.45 15 $0.34^{a} 11$	3360.1	(2^{+})	0.0	+ 0+		
$x_{3376} 0^{a} 6$	0.34 11 0.10 ^{<i>a</i>} 3	5509.1	(2)	0.0	0		
3370.0 0	0.10^{-5}	3383 /		0.0	0+		
3302.0^{a} 6	0.20^{-9}	3/00 5		106.03	2+		
3392.9 U	0.37 13 $0.73^{a} 10$	3505 0		106.03	∠ 2+		
3406 1 ^{<i>a</i>} 6	1.0^{a} 3	3512.1		106.03	2+ 2+		
3400.1 0	0.39^{a} 13	3515.2	(2^{+})	106.03	$\frac{2}{2^{+}}$	(M1 E2)	0.00153.17
$x_{3417.2a}^{x}$ 6	0.59^{a} 7	5515.2	(2)	100.05	-	(1411,122)	0.00133 17

From ENSDF

				17	⁷⁸ Re ε decay	2001Ki10	,197 0	Go20 (co	ontinued)
						$\gamma(^{178}W)$ (co	ntinue	ed)	
E_{γ}^{\dagger}	$I_{\gamma}^{@c}$	E _i (level)	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	E_{γ}^{\dagger}	$I_{\gamma}^{@c}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^π
^x 3428.1 ^a 8	0.28 ^{<i>a</i>} 9			3489.9 ^a 8	$0.17^{a} 4$	3595.0		106.03	2+
^x 3431.4 ^{<i>a</i>} 6	0.62 ^a 9			3506.7 ^a 8	$8 0.09^{a} 4$	3505.9		0.0	0^{+}
^x 3441.2 ^{<i>a</i>} 6	0.31 ^a 10			3512.0 ^a 8	$0.21^{a} 6$	3512.1		0.0	0^{+}
3445.2 ^{<i>a</i>} 6	2.02 ^a 21	3551.2	106.03 2+	x3525.7 ^a 8	8 0.10 ^{<i>a</i>} 3				
3464.9 ^a 6	0.19 ^a 4	3807.3	343.01 4+	3528.7 ^a 8	8 0.45 ^{<i>a</i>} 15	3634.6		106.03	2+
3467.7 ^a 8	0.19 ^a 4	3810.9	343.01 4+	x3544.2 ^a 8	$8 0.05^{a} 2$				
3474.0 ^a 8	0.21 ^{<i>a</i>} 6	3580.4	106.03 2+	x3559.0 ^a 8	$0.06^{a} 2$				
3479.3 ^a 8	0.21 ^{<i>a</i>} 6	3585.7	106.03 2+						

[†] Energy values from 2001Ki10 unless noted otherwise. An uncertainty of 0.2 keV has been assigned to the γ -ray energies from 2001Ki10.

[‡] Multipolarities on the basis of conversion coefficients from 2001Ki10 and 1970Go20, and from γ - γ directional correlation coefficient measurements from 2001Ki10. Conversion coefficients quoted from 1970Go20 have been normalized to α (K,237keV,E2,theo)=0.1064 by the evaluators. Some multipolarities have been tentatively assigned by the evaluators, based mainly on the J^{π} values of the connected levels.

[#] Mixing ratios from 2001Ki10.

[@] γ -ray intensities from 2001Ki10, unless otherwise noted.

[&] Not seen by 1970Go20.

 ∞

^{*a*} From 1970Go20, γ ray not seen by 2001Ki10.

^b γ ray seen by 1970Go20 but not placed in their level scheme; placed by 2001Ki10.

^c For absolute intensity per 100 decays, multiply by 0.9565.

^d Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^e Multiply placed with undivided intensity.

 $x \gamma$ ray not placed in level scheme.

¹⁷⁸**Re** ε decay 2001Ki10,1970Go20

Decay Scheme

 $^{178}_{74}W_{104}$

9

¹⁷⁸Re ε decay 2001Ki10,1970Go20

 $^{178}_{74}W_{104}$

Legend

¹⁷⁸Re ε decay 2001Ki10,1970Go20

Decay Scheme (continued) Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

 $^{178}_{74}W_{104}$

 $^{178}_{74}\rm{W}_{104}$