¹⁸¹Ta(p,4nγ) **1976Ca15**

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	E. Achterberg, O. A. Capurro, G. V. Marti	NDS 110, 1473 (2009)	31-May-2008

Target:¹⁸¹Ta. Projectile: protons, E=33.3-42.6 MeV. Measured E γ , I γ , $\gamma\gamma$ coin, $\gamma\gamma(t)$, $\gamma e^{-}(t)$, $p\gamma(\theta)$ at θ =90° to 150° in steps of 10°, E(ce), Ice. Detectors: Ge(Li), magnetic spectrometer. Others: 1973Bi10, 1965Mi02.

¹⁷⁸W Levels

Note that there is a significant disagreement between the J^{π} assignments for the bands based on the 1666 and 1740 keV levels proposed in 1976Ca15, and those from other experiments. See Adopted Levels, and the individual source datasets. The changes have been noted for the respective levels in the table below.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0#	0^{+}		
106.20 [#] 10	2+		
342.82 [#] 14	4+		
694.18 [#] 17	6+		
1001?	(0^{+})		
1045.15 [@] 21	2-		
1083.3 ^{&} 5	2^{+}		
1111.0 10	(2^{+})		
1120.48 [@] 21	3-		
1131.9? 3	(1^{-})		
1141.82 [#] 20	8+		
1225.83 [@] 22	4-		
1275.7 ^{&} 4	4+		
1344.82 [@] 23	5-		
1381.0 8	(4^{+})		
1509.2 [@] 3	6-		
1556.2 ^{&} 4	6+		
1656.3 [@] 3	7^{-}		
1665.3 [#] 3	10^{+}		
1665.55 ^{<i>a</i>} 21 1709?	6+	3.0 ns 4	J^{π} : from Adopted Levels. 1976Ca15 assigned $J^{\pi}=5^{-}$.
1739.65 ^b 23	7-	8.3 ns 14	J^{π} : from Adopted Levels. 1976Ca15 assigned $J^{\pi} = (6)^+$.
1836.3 ^{<i>a</i>} 3	7+		J^{π} : from Adopted Levels. 1976Ca15 assigned $J^{\pi}=6^{-}$.
1876.7 6			
1888.9 [@] 5	(8-)		
1917.8 ^{&} 6	8+		
1965?	0+		
2024.1° 4	8'		J [*] : from Adopted Levels. 19/6Ca15 assigned $J^{*}=/$.
2041.3 4	(9)		
2044.70 2227 6 ^{<i>a</i>} 4	(9^{+})		I^{π} : from Adopted Levels 1976Ca15 assigned $I^{\pi} = (8^{-})$
2240.4 7	())		v . Hom Radpica Levels. 1970 and assigned v (6).
2244.3 ^{#} 5	12+		
2340? <mark>&</mark>	(10^{+})		
2353.9 [@] 11	(10^{-})		
	(10)		

¹⁸¹Ta(p,4n γ) 1976Ca15 (continued)

¹⁷⁸W Levels (continued)

[†] From a least-squares fit to γ -ray energies.

- [‡] From 1976Ca15, except when indicated otherwise. Assignments in this reference are based on γ -ray angular distributions and decay patterns, and on rotational band structure.
- [#] Band(A): $K^{\pi}=0^+$ g.s. rotational band.

^(a) Band(B): $K^{\pi}=2^{-}$ octupole-vibrational band.

[&] Band(D): $K^{\pi}=0^+ \beta$ -vibrational band. ^a Band(D): $K^{\pi}=(6^+)$ From Adopted Levels. $K^{\pi}=5^-$ proposed in 1976Ca15. ^b Band(E): $K^{\pi}=(7^-)$ From Adopted Levels. $K^{\pi}=(6)^+$ proposed in 1976Ca15.

$\gamma(^{178}W)$

E_{γ}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α #	Comments
74.1 <i>1</i>	10.4 7	1739.65	7-	1665.55	6+	E1	0.803	B(E1)(W.u.)= $3.5 \times 10^{-5} 6$ Mult.: from $\alpha \exp \le 1.2$, determined from transition intensity balance.
105.3 2	1.9 <i>3</i>	1225.83	4-	1120.48	3-			-
106.2 <i>1</i>	35.2 18	106.20	2+	0.0	0^{+}			
137.0 5	3.4 10	1876.7		1739.65	7-			
170.7 2	4.8 8	1836.3	7+	1665.55	6+			
180.8 <i>3</i>	2.0 8	1225.83	4-	1045.15	2-			
187.7 5	0.8 5	2024.1	8+	1836.3	7+			
224.2 5	3.4 15	1344.82	5-	1120.48	3-			
225.4 [@] 5	1.8 10	1965?		1739.65	7-			
236.6 1	100	342.82	4+	106.20	2^{+}			
283.4 2	10.8 2	1509.2	6-	1225.83	4-			
305.0 5	1.3 6	2044.7		1739.65	7-			
311.8 5	5.0 25	1656.3	7-	1344.82	5-			
351.3 <i>I</i>	63.0 25	694.18	6+	342.82	4+	E2	0.0537	Mult.: from $\alpha(K)$ exp=0.036 5.
358.6 <i>3</i>	2.5 5	2024.1	8+	1665.55	6+			
363.7 <i>3</i>	2.8 3	2240.4		1876.7				
379.7 <i>3</i>	3.0 6	1888.9	(8^{-})	1509.2	6-			
385.4 <i>3</i>	2.6 5	2041.3	(9-)	1656.3	7-			
391.3 <i>3</i>	2.2 4	2227.6	(9+)	1836.3	7+			
447.6 <i>1</i>	26.7 20	1141.82	8+	694.18	6+	(E2)	0.0278	Mult.: from adopted gammas.
465.0 10	2.4 12	2353.9	(10^{-})	1888.9	(8-)			1 0
523.5 2	10.6 10	1665.3	10+	1141.82	8+			
579.0 4	3.1 8	2244.3	12^{+}	1665.3	10^{+}			
650.6 2	4.5 9	1344.82	5-	694.18	6+	E1	0.00409	Mult.: $\alpha(K) \exp (-0.006) 2$.
776.0 5	0.8 4	1917.8	8+	1141.82	8+	E0+M1+E2	0.013 6	Mult.: from $\alpha(K)$ exp=0.061 20.
777.6 2	7.8 12	1120.48	3-	342.82	4+			
862.0 <i>3</i>	1.4 <i>3</i>	1556.2	6+	694.18	6+	E0+M1+E2	0.010 4	Mult.: from $\alpha(K)$ exp=0.028 7.
883.0 <i>3</i>	6.1 15	1225.83	4-	342.82	4+	E1	0.00225	Mult.: from $\alpha(K)$ exp=0.0026 5.
898.6 5	1.7 10	2041.3	(9 ⁻)	1141.82	8+			
932.9 <i>3</i>	1.8 <i>3</i>	1275.7	4+	342.82	4+			
939.0 2	10.6 10	1045.15	2^{-}	106.20	2^{+}	E1	0.00201	Mult.: from α (K)exp=0.0014 5.
962.3 <i>3</i>	2.3 3	1656.3	7^{-}	694.18	6+	E1	0.00192	Mult.: from α (K)exp=0.0026 10.
971.2 2	10.0 9	1665.55	6+	694.18	6+	(M1+E2)	0.008 3	Mult.: from adopted gammas. a(K)exp=0.0061 10, consistent with either (M1+E2) or (E1+M2).
977.1 5	1.2 2	1083.3	2^{+}	106.20	2+	E0+M1+E2	0.007 3	Mult.: from $\alpha(K)$ exp=0.019 6.
1002.7 5	3.0 15	1344.82	5-	342.82	4+			× / L
$1014.6^{@}$ 3	3.0.15	1709?		694 18	6+			
1038.0 10	3.6.9	1381.0	(4^{+})	342.82	4 ⁺			
1111.0 10	1.5 8	1111.0	(2^+)	0.0	0^{+}			

Continued on next page (footnotes at end of table)

¹⁸¹Ta(p,4nγ) **1976Ca15** (continued)

$\gamma(^{178}W)$ (continued)

Eγ	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	$E_f = J_j^{\pi}$	Mult. [‡]	α #	Comments
1131.9 [@] 3 1275.0 10 1322.9 2	2.7 7 3.3 10 14.9 12	1131.9? 1381.0 1665.55	(1^{-}) (4^{+}) 6^{+}	$ \begin{array}{cccc} 0.0 & 0^{+} \\ 106.20 & 2^{+} \\ 342.82 & 4^{+} \end{array} $	- - (E2)	0.00263	B(E2)(W.u.)=0.00047 8 Mult.: from adopted gammas. a(K)exp=0.0013 3.

[†] Measured at θ =130°. Projectile energy E(p)=38 MeV.

[‡] From conversion electron data normalized to $\alpha(K)(448\gamma, E2)=0.0209$ and $\gamma(\theta)$.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Placement of transition in the level scheme is uncertain.

 $^{178}_{74}W_{104}$

4

¹⁸¹Ta(p,4nγ) 1976Ca15

 $^{178}_{74}W_{104}$

¹⁸¹Ta(p,4nγ) 1976Ca15

 $^{178}_{74}W_{104}$