(HI,xnγ) 2000Ko48,2000Ko01,1997Ca16

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	E. Achterberg, O. A. Capurro, G. V. Marti	NDS 110, 1473 (2009)	31-May-2008						

2000Ko48,2000Ko01: ¹⁰³Rh(⁷⁸Kr,p2n), E=350 MeV, ATLAS linear accelerator (Argonne National Laboratory). Fragment mass analyzer, GAMMASPHERE array with 101 Compton-suppressed Ge detectors. The remainder of the setup is the same as in the case of 1997Ca16 below. See also 2000AbZZ for first draft of resulting partial level scheme.

1997Ca16: ¹⁰³Rh(⁷⁸Kr,p2n), E=340 MeV, ATLAS superconducting linear accelerator (Argonne National Laboratory). AYEBALL array of 15 Compton-suppressed Ge detectors and 2 LEP spectrometers, for prompt γ ray detection. Fragment mass analyzer for separation of recoiling evaporation residues; position-sensitive avalanche counter. Residues were implanted in a double-sided Si strip detector for spatial and time correlation studies of the recoil and α ray signals.

¹⁷⁸Hg Levels

Level scheme based on α - γ correlations, $\gamma\gamma$ coincidences, and intensity balances.

E(level)	J^{π}	Comments
0.0‡	0^{+}	J^{π} : g.s. of even-even nucleus.
558.00 [‡] 20	2+	
1012.4 [‡] 3	4+	
1346.9 [‡] 4	6+	
1357.8 6	(3-)	
1447.2 6	3-	
1743.5 [‡] 5	8+	
1851.4 8	(4 ⁻)	
1990.2 5	5-	
2157.08	(5)	
2201.2+ 7	10^{+}	
2215.3 8	(6)	
2388.6" 6	7-	
2711.64 8	12^{+}	
2730.0# 7	9-	
3117.7 <mark>#</mark> 8	11^{-}	
3265.2 [‡] 9	14^{+}	
3539.1 [#] 10	13-	
3853.8 [‡] 11	16+	
3980.4 [#] 12	(15 ⁻)	
4454.4 [#] 14	(17 ⁻)	
4469.3 [‡] <i>14</i>	(18^{+})	
4971.9 [#] <i>17</i>	(19 ⁻)	
5090.3 [‡] 16	(20^{+})	
5534.5 [#] 18	(21 ⁻)	

[†] From 2000Ko48, based on multipolarity of connecting transition, and band sequence.

[‡] Band(A): Band 1 Positive-parity g.s. band. Levels connected by stretched E2 transitions (1997Ca16,2000Ko01).

[#] Band(B): Band 2 Negative-parity band. Levels connected by stretched E2 transitions (200Ko48,2000Ko01).

(HI,xnγ) 2000Ko48,2000Ko01,1997Ca16 (continued)

$\gamma(^{178}\text{Hg})$

The anisotropy ratio is defined by $R=I_{\gamma}(<34^{\circ}>)/I_{\gamma}(<90^{\circ}>)$ (see 2000Ko01,2000Ko48, for more details), where the averages indicate a mean value for detector rings at angles bracketing the quoted value. R>1, generally indicates stretched quadrupole, or mixed $\Delta J=1$ M1/E2 transitions, with $\delta>0$. Values of R<1, are associated with either a pure dipole, or a mixed M1/E2, $\Delta J=1$, transition, with $\delta<0$.

E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.@	$\alpha^{\boldsymbol{b}}$	$I_{(\gamma+ce)}$ ‡	Comments
231.5 8	2.1 6	2388.6	7-	2157.0	(5 ⁻)	(E2)	0.239 5		
334.5 ^{&} 2	61.1 <i>13</i>	1346.9	6+	1012.4	4+	E2	0.0775	59 7	A ₂ =0.28 <i>11</i> , A ₄ =-0.24 <i>15</i> , R=1.58 <i>22</i> .
341.4 ^{<i>a</i>} 4	12.5 7	2730.0	9-	2388.6	7-	E2	0.0732		A ₂ =0.34 <i>11</i> , A ₄ =0.00 <i>15</i> , R=1.32 <i>18</i> .
363.9 8	2.0 5	2215.3	(6 ⁻)	1851.4	(4 ⁻)	(E2)	0.0612 10		
387.7 ^{<i>a</i>} 4	10.6 7	3117.7	11-	2730.0	9-	E2	0.0515		A ₂ =0.37 11, A ₄ =-0.06 15, R=1.45 20.
396.6 ^{&} 4	48.5 24	1743.5	8+	1346.9	6+	E2	0.0485	52 7	A ₂ =0.33 <i>11</i> , A ₄ =0.09 <i>15</i> , R=1.21 <i>12</i> .
398.4 4	13.8 21	2388.6	7-	1990.2	5-	E2	0.0479		R=1.47 20.
421.4 ^{<i>a</i>} 6	6.0 6	3539.1	13-	3117.7	11-	E2	0.0414		R=1.21 18.
441.3 ^{<i>a</i>} 6	5.4 6	3980.4	(15^{-})	3539.1	13-	(E2)	0.0367		
454.4 ^{&} 2	74.5 16	1012.4	4+	558.00	2+	E2	0.0341	63 9	A ₂ =0.29 7, A ₄ =-0.07 12, R=1.40 18.
457.7 ^{&} 4	29.3 13	2201.2	10+	1743.5	8+	E2	0.0335	22 6	A ₂ =0.27 5, A ₄ =-0.12 7, R=1.43 18.
474.0 ^a 8	1.9 9	4454.4	(17^{-})	3980.4	(15 ⁻)	(E2)	0.0307		
510.4 ^{&} 4	21.8 9	2711.6	12+	2201.2	10+	E2	0.0256	24 4	A ₂ =0.41 21, A ₄ =-0.16 27, R=1.52 23.
517.5 ^a 8	1.4 8	4971.9	(19 ⁻)	4454.4	(17^{-})	(E2)	0.0248		
542.8 8	2.1 6	1990.2	5-	1447.2	3-	E2	0.0221		R=1.24 23.
553.6 ^{&} 4	12.7 8	3265.2	14+	2711.6	12+	E2	0.0211		R=1.47 25.
558.0 ^{&} 2	100.0 17	558.00	2+	0.0	0^+	E2	0.0208	100 10	A ₂ =0.30 7, A ₄ =-0.15 8, R=1.36 <i>16</i> .
562.6 ^a 8	<1.0	5534.5	(21^{-})	4971.9	(19 ⁻)	(E2)	0.0204		
588.6 <mark>&</mark> 6	6.8 7	3853.8	16+	3265.2	14^{+}	E2	0.0184		R=1.51 21.
615.5 <mark>&</mark> 8	3.0 5	4469.3	(18^{+})	3853.8	16+	(E2)	0.01660		
621.0 <mark>&</mark> 8	<2.0	5090.3	(20^{+})	4469.3	(18^{+})	(E2)	0.01627		
632.2 8	4.0 7	1990.2	5-	1357.8	(3^{-})	E2	0.01564		R=1.35 23.
644.0 ^C 8	<1.0	1990.2	5-	1346.9	6+	(E1)	0.00530		
644.9 8	2.4 5	2388.6	7-	1743.5	8+	E1	0.00529		R=0.47 18.
799.1 8	4.7 11	2157.0	(5 ⁻)	1357.8	(3 ⁻)	(E2)	0.00947		
799.7 6	8.7 8	1357.8	(3 ⁻)	558.00	2+	(E1)	0.00348		R=0.60 19.
839.0 8	3.4 5	1851.4	(4 ⁻)	1012.4	4+	(E1)	0.00318		R=1.59 26.
868.4 8	<1.0	2215.3	(6^{-})	1346.9	6^+	(E1)	0.00298		D 0 02 22
889.1 6	6.88	1447.2	3 5-	558.00	2'	El E1	0.00286		K=0.83 22.
9/8.2.0	6./9	1990.2	3 7-	1012.4	4' (+	EI (E1)	0.00240		K=0.09 20.
1041.0°8	<1.0	2388.6	/	1346.9	0'	(EI)	0.00214		

[†] Energy uncertainties estimated by the evaluators, based on the range assumed in 2000Ko48, each depending on its experimental γ -ray intensity.

[‡] From 1997Ca16.

[#] From 2000Ko48.

(HI,xnγ) 2000Ko48,2000Ko01,1997Ca16 (continued)

$\gamma(^{178}\text{Hg})$ (continued)

[@] From angular distribution coefficients, anisotropy ratios, and band structure (2000Ko48, 19997Ca16).

& Connects levels in g.s. Band 1.

^{*a*} Connects levels Band 2.

^{*b*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^c Placement of transition in the level scheme is uncertain.

¹⁷⁸₈₀Hg₉₈

(HI,xnγ) 2000Ko48,2000Ko01,1997Ca16

