¹⁷⁸Ta ε decay (9.31 min) 1974Ha63,1972Li03,1972Si26

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	E. Achterberg, O. A. Capurro, G. V. Marti	NDS 110, 1473 (2009)	31-May-2008

Parent: ¹⁷⁸Ta: E=0.0+y; $J^{\pi}=1^+$; $T_{1/2}=9.31 \text{ min } 3$; Q(ε)=1937 15; $\mathscr{H}\varepsilon+\mathscr{H}\beta^+$ decay=100.0

¹⁷⁸Ta-T_{1/2} from 2003Au02, $Q(\beta^+)$ from 2003Au03.

Measured $E\gamma$, $I\gamma$, Ice. Detectors: Ge(Li), Si(Li) (1974Ha63). Studied E0 admixtures in various transitions, calculated X(E0/E2) values. Determined conversion coefficients from electron spectra, and assigned multipolarities.

Measured E γ , I γ , $\gamma\gamma$ coin, $\gamma\gamma(\theta)$. Detectors: Ge(Li) (1972Li03). Coincidence spectra, and tables of multipolarity assignments and of angular distribution coefficients are shown.

Measured Ey, Iy. Detector: Ge(Li) (1972Si26).

Other: 1967Ni02. Measured E γ , I γ , $\gamma\gamma$ -coin, T_{1/2}.

¹⁷⁸Hf Levels

E(level) [†]	J^{π}	T _{1/2}	Comments
0.0 [‡]	0^{+}		
93.14 [‡] 4	2+	1.50 ns 3	$T_{1/2}$: from 1962Ka14. Others 1.49 ns 5 (1962Bo13), 1.25 ns 8 (1961Ga05). g _R =0.36 4 (1962Bo13).
306.52 [‡] 6	4+		
1174.61 [#] 6	2^{+}		
1199.22 [@] 8	0^+		
1276.54 [@] 5	2^{+}		J^{π} : from E0 component in 1183 γ to 2 ⁺ 93 keV.
1309.92 7	1-		
1362.37 9	2^{-}		
1433.99 <mark>&</mark> 10	0^{+}		J^{π} : from E0 1434 γ to 0 ⁺ g.s.
1443.83 8	0^{+}		J^{π} : from E0 1443 γ to 0 ⁺ g.s.
1496.01 ^{&} 7	2^{+}		J^{π} : From E2 1496 γ to 0 ⁺ g.s.
1513.65 8			Additional information 1.
1561.27 5	2^{+}		
1566.46 11	2-		
1771.93 19	0^{+}		J^{π} : from E0 1772 γ to 0 ⁺ g.s.

[†] From a least-squares fit to γ -ray energies.

[‡] $K^{\pi}=0^+$ g.s. rotational band.

$K^{\pi}=2^+ \gamma$ -vibrational band.

[@] $K^{\pi} = 0^+$ band.

 $K^{\pi} = 0^{+}$ band.

 ε, β^+ radiations

E(decay)	E(level)	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon\!+\!\beta^+)^\dagger$	Comments
(165 15)	1771.93	0.039 5	5.47 14	0.039 5	ε K=0.67 3; ε L=0.247 21; ε M+=0.084 8
(371 15)	1566.46	0.013 <i>3</i>	6.85 11	0.013 3	εK=0.779 3; εL=0.1677 21; εM+=0.0534 8
(376 15)	1561.27	0.058 2	6.22 5	0.058 2	εK=0.780 3; εL=0.1670 20; εM+=0.0531 8
(423 15)	1513.65	0.028 2	6.65 5	0.028 2	εK=0.7868 20; εL=0.1620 15; εM+=0.0512 6
(441 15)	1496.01	0.82 1	5.23 4	0.82 1	εK=0.7889 18; εL=0.1604 14; εM+=0.0507 5
(493 15)	1443.83	1.20 3	5.17 4	1.20 3	εK=0.7942 14; εL=0.1566 10; εM+=0.0492 4
(503 15)	1433.99	1.03 3	5.26 4	1.03 3	εK=0.7951 14; εL=0.1559 10; εM+=0.0490 4
(575 15)	1362.37	0.014 4	7.25 13	0.014 4	εK=0.8003 10; εL=0.1521 7; εM+=0.0476 3
(627 15)	1309.92	0.033 2	6.96 4	0.033 2	εK=0.8032 8; εL=0.1500 6; εM+=0.04681 22

Continued on next page (footnotes at end of table)

			178 Ta $arepsilon$ de	cay (9.31 m	in) 1974 F	1974Ha63,1972Li03,1972Si26 (continued)				
					ϵ, β^+ radiatio	ons (continued)				
E(decay)	E(level)	$\mathrm{I}\beta^+$ [†]	Ιε [†]	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^\dagger$	Comments				
(660 <i>15</i>) (738 <i>15</i>) (762 <i>15</i>)	1276.54 1199.22		0.26 <i>1</i> 0.54 <i>1</i>	6.12 <i>3</i> 5.904 <i>21</i> 7.52 <i>16</i>	0.26 1 0.54 1	ε K=0.8048 7; ε L=0.1488 6; ε M+=0.04638 19 ε K=0.8079 6; ε L=0.1465 4; ε M+=0.04554 15 ε K=0.8088 5; ε L=0.1450 4; ε M+=0.04521 14				
$(1844 \ 15)$	93.14	0.34 5	34 <i>5</i>	4.95 7	34 <i>5</i>	av E β =384.4 66; ε K=0.8146 5; ε L=0.13436 15; ε M+=0.04117 5				
(1937 15)	0.0	0.90 9	61 5	4.73 4	62 5	E(decay): $E\beta$ +=800 <i>15</i> (1961Ga05). av $E\beta$ =425.2 <i>66</i> ; ε K=0.8113 <i>7</i> ; ε L=0.13341 <i>17</i> ; ε M+=0.04086 <i>6</i> E(decay): $E\beta$ +=890 <i>10</i> (1961Ga05). I β (g.s.)/I β (93)=2.7 <i>5</i> (1967Ni02).				

 † Absolute intensity per 100 decays.

 $\gamma(^{178}{\rm Hf})$

Iγ normalization: From Iβ(g.s.)/Iβ(93)=2.7 5 (1967Ni02), theoretical $ε/β^+$ ratios, and Iγ($γ^{\pm}$)=460 18 (weighted average of 436 13 (1972Li03), 488 14 (1972Si26), and 486 98 (1967Ni02)).

I γ and Ice intensity scales in 1974Ha63 are normalized assuming E2 multipolarity for the 1106 γ , 1340 γ , and 1350 γ .

ω

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger a}$	E_i (level)	\mathbf{J}_i^{π}	E_f J	\int_{f}^{π}	Mult. [‡]	α b	$I_{(\gamma+ce)}^{a}$	Comments
93.13 8	1.37×10 ³ 38	93.14	2+	0.0 0)+	E2	4.67		B(E2)(W.u.)=160 4 E _{γ} ,Mult.: from 1972Li03. I _{γ} : from 1967Ni02.
151.28 ^{&} 14	1.0 2	1513.65		1362.37 2	2-	E0+M1+E2	0.99 24		E_{γ} , I_{γ} , Mult.: From 1972Li03. Seen (for 9.3 min ¹⁷⁸ Ta ε decay) in singles and $\gamma\gamma$ coincidence spectra (gate 1269 γ) only in 1972Li03. Not observed in any of the other decay or reaction datasets.
203.73 20	1.55 15	1513.65		1309.92 1	[-	#			Reported (for 9.3 min 178 Ta ε decay) in 1972Li03 ($\gamma\gamma$ -coin, gate 1216 γ), and in 1972Si26. Not observed in any of the other decay or reaction datasets. Additional information 3.
204.1 ^{&}	0.8 4	1566.46	2-	1362.37 2	2-	M1	0.532		
213.39 6	17.9 24	306.52	4^{+}	93.14 2	2+	E2	0.232		
256.54 16	0.70 14	1566.46	2-	1309.92 1	-	M1+E2	0.21 8		E_{γ} , I_{γ} : from 1972Li03.
269.4 1	3.8 9	1443.83	0^{+}	1174.61 2	2+	E2	0.1100		
970.03 5	11.5 5	1276.54	2^{+}	306.52 4	1 +	E2	0.00435		
1081.52 7	3.74 17	1174.61	2+	93.14 2	2+	E2	0.00349		Additional information 2.
1106.09 7	111.6 25	1199.22	0^{+}	93.14 2	2+	E2	0.00334		Mult.: from α (K)exp=0.00283 <i>17</i> (1974Ha63), $\gamma \gamma(\theta)$ in 1972Li03.
1174.63 7	3.29 17	1174.61	2^{+}	0.0 0)+	E2	0.00297		
1183.38 7	35.3 10	1276.54	2+	93.14 2	2+	E2+M1+E0	0.0042 13		Mult.: from α (K)exp=0.0124 8 (1974Ha63), 0.0139 17 (1971Oh03). Also from $\gamma\gamma(\theta)$ in 1972Li03. δ : δ =0.41 4, from $\gamma\gamma(\theta)$ (1972Li03).
1189.49 <i>10</i>	4.7 5	1496.01	2^{+}	306.52 4	1+	E2	0.00290		
1199.0 <i>3</i>		1199.22	0+	0.0 0)+	E0		0.0058 17	Mult.: $\alpha(K)/\alpha(L)=3.4$ 3 (1974Ha63), $\alpha(K)/\alpha(L)=5.7$ 4 (1972Gi05), $\alpha(K)/\alpha(L)=5.7$ 5 (1971Oh03).
1216 79 12	1 38 8	1309.92	1-	93 14 2	, +				E_{γ} . from 1972Li03
1254 73 12	7 <i>4 4</i>	1561.92	2+	306 52 4	- 1+	F2	0.00262		$\mathbf{L}_{\gamma},\mathbf{i}_{\gamma},\mathbf{n}_{0},\mathbf$
1260 23 8	5.94.20	1362.37	2-	03 14 2	,+	E2 E1	1.11×10^{-3}		
1209.23 8	5.94 20 7 4 6	1276 54	$\frac{2}{2^{+}}$	0.0 0)+	E1 F2	0.00254		Mult : from $\alpha(K) \exp = 0.0019.3 (1974 Ha 63) 20(0)$
1210.54 0	7.50	12/0.54	4	0.0 0	,		0.00237		in 1972Li03.
1309.90 8	8.6 3	1309.92	1-	0.0 0)+	E1	1.08×10^{-3}		
1340.85 9	214 5	1433.99	0+	93.14 2	2+	E2	0.00232		Mult.: from α (K)exp=0.00187 <i>10</i> (1974Ha63), $\gamma \gamma(\theta)$ in 1972Li03.

 $^{178}_{72}\mathrm{Hf}_{106}\text{--}3$

				178	Ta ε decay (9.31 mi	n) 1974	Ha63,1972Li0	3,1972Si26 (c	ontinued)
						$\gamma(^{178}\text{Hf})$	(continued)		
${\rm E}_{\gamma}^{\dagger}$	$I_{\gamma}^{\dagger a}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$. Mult. [‡]	δ	$\alpha^{\boldsymbol{b}}$	$I_{(\gamma+ce)}^{a}$	Comments
1350.55 9	245 6	1443.83	0^{+}	93.14 24	E2		0.00229		Mult.: from α (K)exp=0.00191 <i>11</i> (1974Ha63), $\gamma\gamma(\theta)$ in 1972Li03.
1402.87 9	100	1496.01	2+	93.14 24	+ E2+M1+E0	-0.73 5	0.00315 7		Mult.: from α (K)exp=0.0076 4 and α (K)/ α (L)=7.1 7 (1974Ha63). α (K)/ α (L)=6.6 9 (1972Gi05), α (K/L)=6.7 +14-10 (1971Oh03). Also $\gamma\gamma(\theta)$ in 1972Li03. St. from $\alpha \alpha(\theta)$ (1072Li02)
1400 54 10	0.07 (1512 (5		02.14.24	- FO. MI. FO#		0.0000		$0: \text{ from } \gamma\gamma(\theta) \text{ (1972Li05).}$
1420.54 <i>10</i> 1434.0	0.87 0	1433.99	0^{+}	93.14 2 ⁴ 0.0 0 ⁴	E0+M1+E2" E0		0.0028 8	0.0025 1	Mult.: from 1974Ha63, 1972Gi05, 1971Oh03, and $\gamma\gamma(\theta)$ in 1972Li03.
1443.7		1443.83	0+	0.0 04	E0				Mult.: from $\alpha(K)/\alpha(L)/\alpha(M)$ 248/43.9 20/ 11.4 8 (1974Ha63). $\alpha(K)/\alpha(L)$ 248/40.8 9 (1972Gi05), $\alpha(K/L)=6.05$ 20 (1971Oh03). Also from $\gamma\gamma(\theta)$ in 1972Li03. E _v : from 1974Ha63.
1468.13 2	2.55 21	1561.27	2^{+}	93.14 2+	$E2(+E0+M1)^{\#}$		0.0027 7		
1473.32 12	0.65 5	1566.46	2-	93.14 2+	÷				E_{γ} , I_{γ} : from 1972Li03.
1496.01 11	56.0 13	1496.01	2+	0.0 0+	E2		0.00194		Mult.: from α (K)exp=0.00157 (1974Ha63), $\gamma\gamma(\theta)$ in 1972Li03.
1513.63 12	0.96 4	1513.65		0.0 0+	+ E2 #		0.00190		
1561.30 <i>13</i>	2.20 7	1561.27	2^{+}	0.0 0+	+ E2 #		0.00181		
1678.81 <i>18</i>	0.77 10	1771.93	0^{+}	93.14 2 ⁺	+ E2 #		1.64×10^{-3}		
1772		1771.93	0^{+}	0.0 0+	+ E0 [@]			0.00022 6	

 † Weighted averages of data from 1972Li03 and 1972Si26, unless otherwise specified.

4

* From adopted gammas, unless otherwise specified. # From $\gamma\gamma(\theta)$ in 1972Li03. @ From conversion electron measurements in 1974Ha63. & From level energy differences.

^{*a*} For absolute intensity per 100 decays, multiply by 0.0048 4. ^{*b*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $^{178}_{72}\mathrm{Hf}_{106}\text{--}4$

¹⁷⁸Ta ε decay (9.31 min) 1974Ha63,1972Li03,1972Si26

5