¹⁷⁸Ta ε decay (2.36 h) 1989Ki24,1975Wa24

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	E. Achterberg, O. A. Capurro, G. V. Marti	NDS 110, 1473 (2009)	31-May-2008

Parent: ¹⁷⁸Ta: E=0.0+x; J^{π} =(7)⁻; T_{1/2}=2.36 h 8; Q(ε)=1937 15; % ε +% β ⁺ decay=100.0

¹⁷⁸Ta-Q(β^+) from 2003Au03. T_{1/2} weighted average of 2.1 h *I* (1950Wi67), 2.50 h *I*7 (1958Ca10), 2.2 h *I* (1963Ra14), 2.45 h 5 (1975Wa24).

1958Ca10: Studied the decay of the 2.36 h ¹⁷⁸Ta isomer. Scintillation detectors. Identified γ rays at \approx 215, 325, 415 keV with a T_{1/2} \approx 150 min. First tentative level scheme for ¹⁷⁸Hf.

1960Ha18: Magnetic spectrograph. Measured E(ce), I(ce). Calculated conversion coefficients, assigned multipolarities, deduce Iy.

1975Mo13: Planar and coax Ge(Li). Precision measurements of some $E\gamma$.

1975Wa24: Measured E γ , I γ . Ge(Li) detectors. Calculated log ft values.

1979He11: Planar Ge(Li) detector. Measured $E\gamma$, $I\gamma$.

1989Ki24: Measured Ey, Iy, Ice. Detectors: HPGe, magnetic spectrometer.

¹⁷⁸Hf Levels

E(level) [†]	J^{π}	T _{1/2}	Comments				
0.0 [‡]	0^{+}						
93.179 [‡] 6	2^{+}	1.47 ns 6	T _{1/2} : from 1963Fo02.				
306.613 [‡] <i>15</i>	4+						
632.168 [‡] <i>17</i>	6+						
1058.524 [‡] 20	8+						
1147.381 <i>21</i>	8-	4.0 s 2	$T_{1/2}$: from Adopted Levels.				
1364.02 5	9-						
1478.989 21	8-						

[†] From a least-squares fit to γ -ray energies.

[‡] $K^{\pi} = 0^+$ g.s. rotational band.

ε, β^+ radiations

E(decay)	E(level)	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
(458 15)	1478.989	35.8 3	4.81 4	35.8 3	ε K=0.7908 17; ε L=0.1590 12; ε M+=0.0502 5 Is: 36 (1975Wa24) 35.8.2 (1989Ki24)
(790 15)	1147.381	64.2 <i>3</i>	5.074 24	64.2 <i>3</i>	$\varepsilon K = 0.80975; \varepsilon L = 0.14534; \varepsilon M + = 0.0450813$ Is: 64 (1975Wa24), 64.2 2 (1989Ki24).

[†] Absolute intensity per 100 decays.

$\gamma(^{178}\text{Hf})$

Iy normalization: from decay scheme assuming $I(\gamma+ce)(325\gamma)=100\%$, and using theoretical conversion coefficients.

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger@}$	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [#]	α &	Comments
88.857 7	71.1 <i>18</i>	1147.381	8-	1058.524 8+	E1	0.487	B(E1)(W.u.)= $5.1 \times 10^{-14} 3$ Mult.: α (K)=0.398 9, α (L1)=0.0378 19, α (L2)=0.0130 7, α (L3)=0.0148 8, α (M)=0.480 9 (1989Ki24). Other:

¹⁷⁸Ta ε decay (2.36 h) 1989Ki24,1975Wa24 (continued) $\gamma(^{178}\text{Hf})$ (continued) $I_{\gamma}^{\ddagger @}$ α**&** Mult.# E_{γ}^{\dagger} E_i(level) \mathbf{J}_i^{π} \mathbf{E}_{f} J_{f}^{π} Comments $\alpha(K/L)(exp) \ge 2.3, \alpha(L1/L2)(exp) = 3.1,$ α (L1/L3)(exp)=2.4 (1960Ha18). Theory: $\alpha(K)=0.40, \alpha(L1)=0.041, \alpha(L2)=0.0129,$ $\alpha(L3)=0.0150, \alpha(K/L)=5.8, \alpha(L1/L2)=3.2,$ $\alpha(L1/L3)=2.8.$ 93.179 6 18.4 5 93.179 2^{+} 0.0 0^{+} E2 4.66 B(E2)(W.u.)=163 7 Mult.: $\alpha(K/L) \ge 0.2$, $\alpha(L1/L2) \approx 0.1$, $\alpha(L2/L3)=1.05, \alpha(L/M)=4.0$ (1960Ha18); $\alpha(tot)=5.0 \ 3 \ (1963Fo02)$. Theory: $\alpha(K/L)=0.40, \alpha(L1/L2)=0.082,$ $\alpha(L2/L3)=1.06, \alpha(L/M)=4.0, \alpha(tot)=4.70.$ 306.613 4^{+} 93.179 2+ E2 0.232 Mult.: $\alpha(K/L2)=2.9$, $\alpha(K/L3)=4.8$, 213.434 13 85.9 22 $\alpha(K/M)=6.8, \alpha(L2/M)=2.4, \alpha(L3/M)=1.4$ (1960Ha18). Theory: α (K/L2)=4.4, $\alpha(K/L3)=6.2, \alpha(K/M)=8.1, \alpha(L2/M)=1.9,$ $\alpha(L3/M) = 1.3.$ 216.64 4 0.26 9 1364.02 9-1147.381 8-M1+E2 0.34 12 I_{γ} : from $I_{\gamma}(216\gamma)/I_{\gamma}(213\gamma)=0.003 \ l$ (1979He11). Other: < 0.3 (1975Wa24). Mult.: from adopted values. 306.613 4+ 325.555 8 100.0 10 632.168 6^{+} E2 0.0622 Mult.: $\alpha(K/L2)=5.8$, $\alpha(K/L3)=13.8$, $\alpha(K/M)=12, \alpha(L2/M)=2.5, \alpha(L3/M)=0.9$ (1960Ha18). Theory: α (K/L2)=8.3, $\alpha(K/L3)=14.3, \alpha(K/M)=13.3, \alpha(L2/M)=1.6,$ α (L3/M)=0.93. 331.608 4 33.15 20 1478.989 8-1147.381 8-M1(+E2) 0.10 5 Mult.: Experiment: $\alpha(K)=0.121$ 2, α (L2/L1)=0.077 7 (1989Ki24). Other values: $\alpha(K/L1)=6.9, \alpha(K/M)=24$ (1960Ha18). $\delta \le 0.063$ (1989Ki24) Theory: $\alpha(K)=0.119$, $\alpha(L2/L1)=0.083, \alpha(K/L1)=7.1, \alpha(K/M)=29.$ 426.355 10 103.5 30 1058.524 8+ 632.168 6+ E2 0.0292 Mult.: $\alpha(K/L1)=3.8$, $\alpha(K/M)=13$, $\alpha(L1/M)=3.6$ (1960Ha18). Theory: α (K/L1)=7.9, $\alpha(K/M)=17, \alpha(L1/M)=2.2.$

[†] Weighted averages of values in 1958Ca10, 1960Ha18, 1975Mo13, 1975Wa24, 1979He11, 1989Ki24 and 2007La14.

[‡] Weighted averages of values in 1975Wa24 and 1989Ki24, except when noted otherwise.

[#] From adopted values. Note that the quoted electron conversion data from 1960Ha18 appear rather crude and unreliable, having trouble reproducing even the well known E2 multipolarities of the g.s. band cascade.

[@] For absolute intensity per 100 decays, multiply by 0.941 12.

[&] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁷⁸Ta ε decay (2.36 h) 1989Ki24,1975Wa24

Decay Scheme

