180 Hf(p,t) 1973Oo01

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	E. Achterberg, O. A. Capurro, G. V. Marti	NDS 110, 1473 (2009)	31-May-2008

Target: 98.21% enriched ¹⁸⁰Hf. FWHM=10 to 12 keV. Angular distributions were measured at θ =12.5°, 27.5°, 42.5°, and 55° to identify L=0 angular momentum transfers. L≠0 transfers were tentatively identified by comparison of the data with shapes of angular distributions to well-known states.

178Hf Level	s
-------------	---

E(level)	\mathbf{J}^{π}	L†	Comments
0.0‡	0^{+}	0	
92 [‡] 10	2^{+}	(2)	
304 [‡] 10	4+		
635 [‡] 10	6+		
1088? 10			E(level): may be due to source contaminant.
1179 <i>10</i>	2^{+}	(2)	
1272 10			
1325 10	4+		E(laval), maggible doublet
138/10	4	0	E(level): possible doublet.
1448" 10	01	0	
1510" 10	21	(2)	E(level): doublet.
1643 <i>10</i>			
1776 [@] 10	0^{+}	0	
1816 [@] 10	(2^{+})	(2)	E(level): doublet.
1874 <i>10</i>			
1947 <i>10</i>			
1991 10			
2024 ^{x} 10		0	
2056 ^{&} 10		(2)	
2121 10			
2156 10			
2205 10			
2286 10			
2316 ^{<i>a</i>} 10		(0)	
2371 ^a 10		(2)	
2393 10			
2435 10			
24/4 10			
2678 10			
2668 10		(2)	
2707 10		· /	

[†] L-values have been determined by comparison with shapes of angular distributions for transfers to known states. L=0 transfers have a very distinctive oscillatory pattern which gives a firmer identification. Determination of L=2 transfers is more tentative. [‡] $K^{\pi}=0^+$ g.s. rotational band.

 $\begin{array}{l} \# \ K^{\pi} = 0^{+} \ \text{band.} \\ @ \ K^{\pi} = 0^{+} \ \text{band.} \\ \& \ K^{\pi} = 0^{+} \ \text{band.} \\ a \ K^{\pi} = 0^{+} \ \text{band.} \end{array}$