¹⁷⁸Hf IT decay (31 y) **2003Sm05,1980Va04,1976De20**

	History			
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	E. Achterberg, O. A. Capurro, G. V. Marti	NDS 110,1473 (2009)	31-May-2008	

Parent: ¹⁷⁸Hf: E=2445.69 *11*; $J^{\pi}=16^+$; $T_{1/2}=31$ y *1*; %IT decay=100 ¹⁷⁸Hf-E(ex) from 2003Au02; $T_{1/2}$ from 1973He19.

1968He10: Measured E γ , I γ , $\gamma\gamma$ coin. Detectors: Ge(Li), scin.

1976De20: Measured γ singles, ce spectra, $\gamma\gamma$, $X\gamma$ and $\epsilon\gamma$ coin, Detectors: Ge(Li) anti-Compton, scin, Si(Li). Provided γ intensities, determined conversion coefficients.

1980Va04: Measured E γ , I γ , ce, $\gamma\gamma$ coin. Detectors: Ge(Li) high purity, Ge(Li) anti-Compton, Si(Li). Deduced reduced transitions probabilities B(QL).

1993T101: Measured $\gamma\gamma(\theta)$, detector: array of seven Ge(Li) detectors. Determined mixing ratios for several transitions in the $K^{\pi}=8^{-}$ isomeric band.

2003Sm05: Measured E γ , I γ , $\gamma\gamma$ using an array of 20 Compton-suppressed HPGe detectors. Others: 1973He19.

¹⁷⁸Hf Levels

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	Comments					
0.0‡	0^{+}							
93.193 [‡] 7	2^{+}							
306.627 [‡] 10	4+							
632.187 [‡] <i>15</i>	6+							
1058.548 [‡] 17	8+							
1147.421 [#] 20	8-	4.0 s 2	$T_{1/2}$: From Adopted Levels.					
1364.083 [#] 21	9-							
1601.488 [#] 22	10-							
1859.123 [#] 23	(11) ⁻							
2136.527 [#] 25	(12)-							
2202.52 [@] 7	11-		E(level), J^{π} : from 2003Sm05.					
2433.34 [#] 3	(13)-							
2446.07 ^{&} 7	16+	31 y <i>1</i>	T _{1/2} : from 1973He19. Long lived isomer identified in 1968He10. Limits on alternate decay modes: $β^-<0.3\%$, $ε<1\%$, $α<5\times10^{-6}\%$, SF<3×10 ⁻⁶ % (1980Va04,2007Ka27).					

[†] From a least-squares fit to γ -ray energies.

[‡] Band(A): $K^{\pi}=0^+$ g.s. rotational band.

[#] Band(B): $K^{\pi} = 8^{-}$ isomeric band.

[@] Band(C): $K^{\pi} = 8^{-}_{2}$ band.

[&] Band(D): $K^{\pi} = 16^+$ isomeric band.

$\gamma(^{178}{\rm Hf})$

I γ normalization: From decay scheme if I(γ +ce)(325.6 γ)=100%.

 \mathbf{b}

${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\ddagger @}$	E _i (level)	J_i^π	E_f	\mathbf{J}_f^{π}	Mult.	δ	α ^{&}	Comments
(12.7 2)	7.2×10 ⁻⁶	2446.07	16+	2433.34	(13) ⁻	E3		1.47×10 ⁷ 15	 B(E3)(W.u.)<4.5×10⁻¹⁰ E_γ: from adjusted level energy differences. I_γ: Estimated by evaluators based on intensity balance at the isomeric level, using theoretical total conversion coefficients, and assuming a pure E3 multipolarity for the 12.7 keV transition. Mult.: α(M)/α(L)(exp)=0.44 +31-23, 0.3≤α(L2)/α(L3)(exp)≤0.7 (1976De20). Note that the range of the measured conversion coefficients allows a significant M4 admixture.
88.873 11	67.9 9	1147.421	8-	1058.548	8+	E1		0.487	B(E1)(W.u.)=5.1×10 ⁻¹⁴ 3 Mult.: Experiment: $\alpha(tot)=0.52$ 3, $\alpha(L1+L2)=0.058$ 13, $\alpha(M)=0.019$ 6 (1980Va04); $\alpha(K)=0.59$ 9, $\alpha(L)=0.089$ 21, $\alpha(M)=0.030$ 7 (1976De20). Theory: $\alpha(tot)(E1)=0.487$, $\alpha(tot)(M2)=57.4$, $\alpha(K)(E1)=0.4$, $\alpha(K)(M2)=39.8$, $\alpha(L)(E1)=0.069$, $\alpha(L)(M2)=13.4$, $\alpha(L1+L2)(E1)=0.054$, $\alpha(L1+L2)(M2)=11.0$, $\alpha(M)(E1)=0.016$, $\alpha(M)(M2)=3.3$. The evaluators deduce an average value for the mixing ratio of $\delta=0.042$ 9, indicating an upper limit of $\approx 0.3\%$ for any M2 admixture
93.193 7	18.7 <i>3</i>	93.193	2+	0.0	0+	E2		4.66	Mult.: Experiment: $\alpha(K)=0.93\ 23$, $\alpha(L)=2.68\ 16$, $\alpha(M)=0.85\ 6\ (1976De20)$. Theory: $\alpha(K)=1.08$, $\alpha(L)=2.72$, $\alpha(M)=0.68$.
213.434 6	85.8 11	306.627	4+	93.193	2+	E2		0.232	Mult.: Experiment: $\alpha(K)=0.148$ 7, $\alpha(L)=0.071$ 4, $\alpha(M)=0.0195$ 10 (1976De20). Theory: $\alpha(K)(E2)=0.140$, $\alpha(K)(M3)=6.63$, $\alpha(L)(E2)=0.070$, $\alpha(L)(M3)=2.79$, $\alpha(M)(E2)=0.0172$, $\alpha(M)(M3)=0.708$.
216.668 7 230.8 <i>I</i>	69.0 <i>9</i>	1364.083 2433 34	9 ⁻	1147.421 2202 52	8-	M1+E2	1.63 [#] +22-18	0.284 12	Mult.: $\alpha(K)(exp)=0.207 \ 11$, $\alpha(L)(exp)=0.069 \ 4$, $\alpha(M)(exp)=0.022 \ 1 \ (1976De20)$. Theory: $\alpha(K)(M1)=0.376, \ \alpha(K)(E2)=0.134, \ \alpha(L)(M1)=0.058, \ \alpha(L)(E2)=0.066, \ \alpha(M)(M1)=0.013, \ \alpha(M)(E2)=0.016.$ E. L.: from 2003Sm05
237.430 10	9.73 15	1601.488	10-	1364.083	9-	M1+E2	1.57 [#] +31-24	0.218 14	Mult.: $\alpha(K)(exp)=0.165$ 14, $\alpha(L)(exp)=0.060$ 7 (1976De20)1 theory: $\alpha(K)(M1)=0.293$,

				¹⁷⁸ Hf I 7	Г decay	(31 y) 20	03Sm05,1980Va04	4,1976De20	(continued)
γ ⁽¹⁷⁸ Hf) (continued)									
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\ddagger@}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	δ	α &	Comments
									$\alpha(K)(E2)=0.104, \ \alpha(L)(M1)=0.045, \ \alpha(L)(E2)=0.046.$
257.645 10	17.7 3	1859.123	(11)-	1601.488	10-	M1+E2	4.3 [#] +26-12	0.134 7	Mult.: $\alpha(K)(exp)=0.095 \ 6, \ \alpha(L)(exp)=0.037 \ 6, \ \alpha(M)(exp)=0.009 \ 3 \ (1976De20).$ Theory: $\alpha(K)(M1)=0.234, \ \alpha(K)(E2)=0.083, \ \alpha(L)(M1)=0.036, \ \alpha(L)(E2)=0.033, \ \alpha(M)(M1)=0.0081, \ \alpha(M)(E2)=0.0080.$
277.402 18	1.58 10	2136.527	(12) ⁻	1859.123	(11)-	(M1+E2)	>1.13#	0.13 3	Mult.: $\alpha(K)(exp) \le 0.13$ (1976De20); theory: $\alpha(K)(M1)=0.192$, $\alpha(K)(E2)=0.068$.
296.812 <i>10</i>	10.64 <i>18</i>	2433.34	(13)-	2136.527	(12)-	M1+E2	-3.8 [#] +12-28	0.089 8	Mult.: $\alpha(K)(exp)=0.058 \ 8, \ \alpha(L)(exp)=0.024 \ 7 \ (1976De20).$ Theory: $\alpha(K)(M1)=0.160, \ \alpha(K)(E2)=0.056, \ \alpha(L)(M1)=0.0244, \ \alpha(L)(E2)=0.0194.$
309.40 21	0.015 <i>I</i>	2446.07	16+	2136.527	(12)-	M4(+E5)	0.12 10	8.44 13	B(M4)(W.u.)=3.7×10 ⁻⁸ 5; B(E5)(W.u.)=8.E-6 +13-8 Additional information 2. Mult.: α (L)/ α (K)(exp)=0.55 8, α (K)(exp)>2.5 (1980Va04); theory: α (L)/ α (K)=0.50, α (K)=5.06. These values are consistent with an δ (M4/E5)=0.12 10 mixing ratio.
325.560 11	100.0 11	632.187	6+	306.627	4+	E2		0.0622	Mult.: $\alpha(K)(exp)=0.0443 \ 20, \ \alpha(L)(exp)=0.0124 \ 8, \ \alpha(M)(exp)=0.0050 \ 8 \ (1976De20).$ Theory: $\alpha(K)(E2)=0.0441, \ \alpha(K)(M3)=1.381, \ \alpha(L)(E2)=0.0138, \ \alpha(L)(M3)=0.412, \ \alpha(M)(E2)=0.0033, \ \alpha(M)(M3)=0.101.$
343.3 <i>1</i> 426.360 <i>8</i>	0.0018 <i>3</i> 102.6 <i>13</i>	2202.52 1058.548	$\frac{11^{-}}{8^{+}}$	1859.123 632.187	$(11)^{-}$ 6 ⁺	E2		0.0292	E _γ ,I _γ : from 2003Sm05. Mult.: α (K)(exp)=0.0217 10, α (L)(exp)=0.0056 7, α (M)(exp)=0.0015 4 (1976De20). Theory: α (K)(E2)=0.0221 α (L)(E2)=0.0055 α (M)(E2)=0.0013
454.048 12	17.60 25	1601.488	10-	1147.421	8-	E2		0.0248	Mult.: $\alpha(K)(exp)=0.026$ 5 (1976De20); theory: $\alpha(K)(E2)=0.0189$, $\alpha(K)(M3)=0.423$.
495.013 <i>15</i>	74.5 14	1859.123	(11)-	1364.083	9-	E2		0.0198	Mult.: $\alpha(K)(exp)=0.0174$ <i>14</i> , $\alpha(L)(exp)=0.0032$ <i>7</i> , $\alpha(M)(exp)=0.0014$ <i>5</i> (1976De20). Theory: $\alpha(K)(E2)=0.0154$, $\alpha(K)(M3)=0.314$, $\alpha(L)(E2)=0.0034$, $\alpha(L)(M3)=0.074$, $\alpha(M)(E2)=0.00081$, $\alpha(M)(M3)=0.0176$.
515.1 ^a	< 0.0008	1147.421	8-	632.187	6+	M2		0.1365	B(M2)(W.u.)=3.E-14 3 E _{γ} ,I _{γ} ,Mult.: from 2003Sm05.
535.038 18	9.8 <i>3</i>	2136.527	(12) ⁻	1601.488	10-	E2		0.01635	Mult.: $\alpha(K)(exp)=0.018$ 4 (1976De20). Theory: $\alpha(K)(E2)=0.0128$, $\alpha(K)(M3)=0.241$.
574.219 <i>21</i>	94.2 19	2433.34	(13)-	1859.123	(11)-	E2		0.01378	Mult.: $\alpha(K)(exp)=0.0122$ 10, $\alpha(L)(exp)=0.0023$ 4, $\alpha(M)(exp)=8.4\times10^{-4}$ 23 (1976De20). Theory: $\alpha(K)(E2)=0.0109$, $\alpha(K)(M3)=0.191$, $\alpha(L)(E2)=0.00223$, $\alpha(L)(M3)=0.0418$, $\alpha(M)(E2)=5.2\times10^{-4}$, $\alpha(M)(M3)=0.0099$.
587.0 1	0.0062 5	2446.07	16+	1859.123	(11) ⁻	E5		0.284	B(E5)(W.u.)= $1.9 \times 10^{-7} 3$ E _{γ} ,I _{γ} ,Mult.: from 2003Sm05.
601.1 <i>1</i>	0.0026 3	2202.52	11-	1601.488	10-				E_{γ} , I_{γ} : from 2003Sm05.

ω

From ENSDF

 $^{178}_{72}\mathrm{Hf}_{106}\mathrm{-3}$

L

¹⁷⁸Hf IT decay (31 y) 2003Sm05,1980Va04,1976De20 (continued)

$\gamma(^{178}\text{Hf})$ (continued)

- [†] Weighted averages of data from 2003Sm05, 1980Va04, and 1968He10, unless noted otherwise.
- [±] Weighted averages of data from 2003Sm05, 1980Va04, 1976De20, and 1968He10, unless noted otherwise.
- [#] From $\gamma\gamma(\theta)$ (1993Tl01).
- [@] For absolute intensity per 100 decays, multiply by 0.941 *12*.

[&] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^{*a*} Placement of transition in the level scheme is uncertain.

¹⁷⁸Hf IT decay (31 y) 2003Sm05,1980Va04,1976De20

 $^{178}_{72}\mathrm{Hf}_{106}$

 $^{178}_{72}\mathrm{Hf}_{106}$