¹⁸¹Hg α decay 1979Ha10

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	F. G. Kondev	NDS 159, 1 (2019)	30-Aug-2019					

Parent: ¹⁸¹Hg: E=0.0; $J^{\pi}=1/2^{-}$; $T_{1/2}=3.4$ s 3; $Q(\alpha)=6284$ 4; % α decay=24.3 21

¹⁸¹Hg-T_{1/2}: From 1979Ha10 (supersedes 3.6 s 3 in 1969Ha03 and 1970Ha18). Others: 3.2 s 7 (1982HeZM) and 3.4 s 6 (1992BoZO).

¹⁸¹Hg-Q α from 2017Wa10.

1979Ha10: ¹⁸¹Hg source produced using spallation reaction reactions with 600 MeV protons on lead target. Detectors: 200 mm² silicon surface barrier detector with a typical energy resolution of 25 keV (FWHM), 100 mm² surface barrier silicon detector, 43 cm³ Ge(Li) γ -detector with a typical energy resolution of 2.1 keV (FWHM) at 1.33 MeV. Measured: E α , I α , $\%\alpha$, T_{1/2}, $\alpha\gamma$ coin, $\alpha\gamma$ (t). Other (from the same group): 1978Ha30.

Others: 1970Ha18, 1975Ho02, 1982HeZM, 1986Ke03, 1992BoZO, 1996Pa01.

177 Pt Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡	Comments
0.0	5/2-	10.0 s 4	Eα=5527 keV 6, Iα=88 7, Eα=5435 keV 10, Iα=12 1 (1979Ha10). Others: Eα=5535 keV 20 (1982HeZM); Eα=5525 keV 20, Iα=66 6 and 5485 keV 20, Iα=34 3 (1970Ha18); Eα=5510 keV 10 (1966Si08); Eα=5530 keV 25 (1968De01); Eα=5510 keV 3 (1982Bo04).
81.0 <i>4</i> 147.4 <i>4</i> 214.2 <i>5</i> 239.8 <i>4</i>	7/2 ⁻ 1/2 ⁻ (3/2 ⁻) 5/2 ⁻	2.2 μs 3	T _{1/2} : From $\alpha\gamma$ (t) by gating on E α = 6006 keV and E γ = 147.4 keV (1979Ha10).

[†] From least-squares fit to $E\gamma$.

[‡] From Adopted Levels.

 α radiations

$E\alpha^{\dagger}$	E(level)	$I\alpha^{\dagger \#}$	HF^{\ddagger}	Comments
5916 <i>10</i>	239.8	4.6 19	73	Eα,Iα: Others: Eα=5920 keV 20,Iα=5.36 (1986Ke03) and Eα=5920 keV 30 (1970Ha18).
5938 10	214.2	6.1 17	6.5 20	$E\alpha$, $I\alpha$: Others: $E\alpha$ =5928 keV 30 (not resolved from 5916 α), $I\alpha$ (5938 α + 5916 α)=13 (1982HeZM).
6006 5	147.4	88 <i>3</i>	0.86 12	Eα,Iα: Others: Eα=6003 keV, Iα=80.95 (1986Ke03); Eα=6007 keV 20, Iα=87 (1982HeZM); Eα=6003 keV 15 (1970Ha18); Eα=6180 keV (1992BoZO); Eα=5986 keV 13 (1996Pa01).
6071 10	81.0	1.5 3	94 <i>23</i>	$E\alpha$, $I\alpha$: Others: $E\alpha$ =6071 keV, $I\alpha$ =6.72 (1986Ke03).
6148 10	0.0	0.5 11	6.×10 ² 14	E α ,I α : Others: E α =6134 keV, I α =6.96 (1986Ke03).

[†] From 1979Ha10.

[±] Calculated using $r_0(^{177}Pt) = 1.525 4$, weighted average of $r_0 = 1.533 4 (^{176}Pt)$ and 1.523 8 (^{178}Pt) deduced from HF=1.0.

[#] For absolute intensity per 100 decays, multiply by 0.243 21.

¹⁸¹Hg α decay **1979Ha10** (continued)

 $\gamma(^{177}\text{Pt})$

E_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}
80.9 5	81.0	7/2-	0.0	5/2-
92.4 5	239.8	$5/2^{-}$	147.4	$1/2^{-}$
147.4 5	147.4	$1/2^{-}$	0.0	$5/2^{-}$
158.7 5	239.8	$5/2^{-}$	81.0	$7/2^{-}$
214.2 5	214.2	$(3/2^{-})$	0.0	$5/2^{-}$
239.8 5	239.8	$5/2^{-}$	0.0	$5/2^{-}$

[†] From 1979Ha10. Note, that the 66.3 keV γ -ray is shown in the level scheme given in Fig. 6 (1979Ha10), but no evidence for such a transition is seen in the spectrum shown in Fig. 5 (1979Ha10). Given the adopted level scheme for ¹⁷⁷Pt, the multipolarity of such a transition would be M3. Hence, by using the Weisskopf estimates for the reduced transition probabilities, one may expect I γ (66.3)/I γ (147.7) \approx 10⁻¹¹. It is worth noting, that 66.3 γ overlaps with the Pt K α_1 x ray energy.

¹⁸¹Hg α decay 1979Ha10

Decay Scheme

