## (HI,xnγ) 2001Ko44,2017Ve03,2014AlZX

| History         |              |                   |                        |  |  |  |
|-----------------|--------------|-------------------|------------------------|--|--|--|
| Туре            | Author       | Citation          | Literature Cutoff Date |  |  |  |
| Full Evaluation | F. G. Kondev | NDS 159, 1 (2019) | 30-Aug-2019            |  |  |  |

2001Ko44: Produced using the <sup>96</sup>Mo(<sup>84</sup>Sr,p2n $\gamma$ ) reaction. E(<sup>84</sup>Sr)=380 MeV. Target: <sup>96</sup>Mo, 700  $\mu$ g/cm<sup>2</sup> thick, 96.8 % enriched. Detectors: Argonne Fragment Mass Analyzer, Parallel Grid Avalanche Counter, 40x40 strips Double-sided Silicon Strip Detector (DSSD), Gammasphere gamma-ray spectrometer, 4 large volume HPGe detectors and a single low-energy photon spectrometer (LEPS) detector placed around the DSSD. Recoil decay tagging technique. Measured: mass- and  $\alpha$ -gated E $\gamma$ , I $\gamma$  and  $\gamma\gamma$  coin; mass-gated E $\alpha$ , I $\alpha$ ,  $\alpha$ (t),  $\alpha\gamma$  coin, E $\alpha$ (parent)-E $\alpha$ (daughter) correlations, T<sub>1/2</sub>. Others (the same collaboration): 2001Ko13, 2003CaZZ, and 2005CaZY. The complementary information from 2001Ko44 is given in 2001KoZO.

2014AIZX,2017Ve03: Produced using the <sup>92</sup>Mo(<sup>88</sup>Sr,p2nγ) reaction. E(<sup>88</sup>Sr)=399 MeV. Target: <sup>92</sup>Mo, 600 µg/cm<sup>2</sup> thick, 98 % enriched. Detectors: RITU gas-filled recoil separator, multiwire proportional counter, double-sided silicon strip detector, JUROGAM-II array, consisting of 24 clover- and 15 EUROGAM-type Compton-suppressed HPGe detectors. Recoil decay tagging technique. Measured: α-gated Eγ, Iγ and γγ coin.

The spin assignments for the well-deformed  $11/2^{-}[505]$  (h<sub>11/2</sub>) band differ in 2017Ve03 and 2014AlZX, albeit they are from the same collaboration. The 2014AlZX assignments are identical to those in 2001Ko44, 2001KoZO. While the 2017Ve03 values are adopted in the present evaluation (primary reference), the spins are likely higher, otherwise the band is not close to the yrast line, which would result in much lower population in (HI,xn $\gamma$ ).

## <sup>177</sup>Au Levels

| E(level) <sup>†</sup>        | $J^{\pi \ddagger}$     | T <sub>1/2</sub>  | Comments                                                                                                                                                                                                                                 |
|------------------------------|------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0                          | 1/2+                   | 1.501 s 20        | J <sup><math>\pi</math></sup> ,T <sub>1/2</sub> : From Adopted Levels. Values in (HI,xn $\gamma$ ): 1.462 s 32 (2001Ko44) and 1.511 s 13 (2014AlZX), using $\alpha$ (t). configuration: $\pi$ (s <sup>-1</sup> <sub>1/2</sub> ) orbital. |
| 24.9 3                       | $(3/2^+)$              |                   | -1-                                                                                                                                                                                                                                      |
| 182.7 <sup>&amp;</sup> 5     | (11/2 <sup>-</sup> )   | 1.193 s <i>13</i> | T <sub>1/2</sub> : From Adopted Levels. Values in (HI,xnγ): 1.180 s <i>12</i> (2001Ko44) and 1.205 s <i>11</i> (2014AIZX), using $\alpha$ (t). configuration: $\pi$ (h <sup>-1</sup> , ), spherical (weakly-deformed) shape.             |
| 290.3 <i>3</i>               | $(5/2^+)$              |                   |                                                                                                                                                                                                                                          |
| 423.6 <sup>#</sup> 5         | (9/2-)                 | ≤15 ns            | $T_{1/2}$ : Estimated from intensity balance considerations (2001Ko44).                                                                                                                                                                  |
| 703.5 <sup>&amp;</sup> 7     | $(13/2^{-})$           |                   |                                                                                                                                                                                                                                          |
| 706.6 <sup>&amp;</sup> 7     | $(15/2^{-})$           |                   |                                                                                                                                                                                                                                          |
| 713.5 <sup>#</sup> 5         | $(13/2^{-})$           |                   |                                                                                                                                                                                                                                          |
| 743.0 4                      | $(9/2^+)$              |                   |                                                                                                                                                                                                                                          |
| 743.0+x <sup>@</sup> 5       | $(13/2^+)$             |                   | Additional information 1.                                                                                                                                                                                                                |
| 903.10+x <sup>@</sup> 10     | $(17/2^+)$             |                   |                                                                                                                                                                                                                                          |
| 931.0 <sup><i>u</i></sup> 7  | $(11/2^{-})$           |                   |                                                                                                                                                                                                                                          |
| $1096.2^{m} 6$<br>1102.64 7  | $(1^{7}/2^{-})$        |                   |                                                                                                                                                                                                                                          |
| $1102.0^{-7}$                | (13/2)<br>$(21/2^+)$   |                   |                                                                                                                                                                                                                                          |
| $1305.6^{a}$ 7               | (21/2)<br>$(15/2^{-})$ |                   |                                                                                                                                                                                                                                          |
| 1430.7 <sup>&amp;</sup> 9    | $(17/2^{-})$           |                   |                                                                                                                                                                                                                                          |
| 1499.40+x <sup>@</sup> 18    | $(25/2^+)$             |                   |                                                                                                                                                                                                                                          |
| 1526.2 <sup><i>a</i></sup> 8 | $(17/2^{-})$           |                   |                                                                                                                                                                                                                                          |
| 1532.0 <sup>#</sup> 7        | $(21/2^{-})$           |                   |                                                                                                                                                                                                                                          |
| 1577.4 <sup>&amp;</sup> 9    | $(19/2^{-})$           |                   |                                                                                                                                                                                                                                          |
| 1758.3 <sup><i>a</i></sup> 8 | $(19/2^{-})$           |                   |                                                                                                                                                                                                                                          |
| 1909.30+x <sup>w</sup> 20    | $(29/2^+)$             |                   |                                                                                                                                                                                                                                          |
| 2004.3" 8                    | (21/2)                 |                   |                                                                                                                                                                                                                                          |
| 2020.2" 7                    | $(25/2^{-})$           |                   |                                                                                                                                                                                                                                          |

## (HI,xnγ) 2001Ko44,2017Ve03,2014AIZX (continued)

## <sup>177</sup>Au Levels (continued)

| E(level) <sup>†</sup>     | $J^{\pi \ddagger}$ | E(level) <sup>†</sup>         | $J^{\pi \ddagger}$ | E(level) <sup>†</sup>   | J#‡          | E(level) <sup>†</sup>     | $J^{\pi \ddagger}$ |
|---------------------------|--------------------|-------------------------------|--------------------|-------------------------|--------------|---------------------------|--------------------|
| 2262.5 <sup>a</sup> 9     | $(23/2^{-})$       | 2810.3 <sup><i>a</i></sup> 11 | $(27/2^{-})$       | 3480.6+x <sup>@</sup> 4 | $(41/2^+)$   | 5444.3+x <sup>@</sup> 6   | $(53/2^+)$         |
| 2381.20+x <sup>@</sup> 23 | $(33/2^+)$         | 2907.10+x <sup>@</sup> 25     | $(37/2^+)$         | 3709.0? <sup>#</sup> 14 | $(37/2^{-})$ | 6158.2+x? <sup>@</sup> 12 | $(57/2^+)$         |
| 2533.2 <sup>a</sup> 9     | $(25/2^{-})$       | 3100.4 <sup><i>a</i></sup> 11 | $(29/2^{-})$       | 4096.3+x <sup>@</sup> 4 | $(45/2^+)$   |                           |                    |
| 2553.8 <sup>#</sup> 8     | $(29/2^{-})$       | 3121.0 <sup>#</sup> 10        | $(33/2^{-})$       | 4753.3+x <sup>@</sup> 5 | $(49/2^+)$   |                           |                    |

<sup>†</sup> From a least-squares fit to  $E\gamma$ .

<sup> $\ddagger$ </sup> From the deduced  $\gamma$ -ray transition multipolarities and the observed band structures, unless otherwise stated.

<sup>#</sup> Band(A):  $\pi 1/2[541]$  (h<sub>9/2</sub>) band.

<sup>@</sup> Band(B):  $\pi 1/2[660]$  (i<sub>13/2</sub>) band.

& Seq.(D): Spherical (weakly-deformed)  $\pi h_{11/2} \otimes J^{\pi}$  (even-even core).

<sup>*a*</sup> Band(C): Well-deformed  $\pi 11/2[505]$  (h<sub>11/2</sub>) band.

| E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$   | ${\rm E_{\gamma}}^{\dagger}$ | $I_{\gamma}^{\dagger}$      | $E_f$     | ${ m J}_f^\pi$       | Mult.&  | Comments                                                                                                                                                                                                                        |
|------------------------|----------------------|------------------------------|-----------------------------|-----------|----------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 24.9                   | $(3/2^+)$            | (24.9 3)                     |                             | 0.0       | $1/2^{+}$            |         | $E_{\gamma}$ : From level energy differences.                                                                                                                                                                                   |
| 290.3                  | $(5/2^+)$            | 265.4 <sup>‡</sup> 2         | 60.2 <sup>@</sup> 20        | 24.9      | $(3/2^+)$            |         | ,                                                                                                                                                                                                                               |
|                        |                      | 290.3 <sup>‡</sup> 4         | 30.3 <sup>@</sup> 10        | 0.0       | $1/2^{+}$            |         |                                                                                                                                                                                                                                 |
| 423.6                  | (9/2-)               | 240.8 <i>3</i>               | 53 6                        | 182.7     | $(11/2^{-})$         | (M1+E2) | Mult.: R(DCO)=0.9 4 implies M1,E2.                                                                                                                                                                                              |
| 703.5                  | $(13/2^{-})$         | 520.7 <sup>#</sup> 5         | 68 <sup>#</sup> 12          | 182.7     | $(11/2^{-})$         | (M1+E2) | Mult.: R(DCO)=0.59 14.                                                                                                                                                                                                          |
| 706.6                  | $(15/2^{-})$         | 523.8 <sup>#</sup> 5         | 36 <sup>#</sup> 12          | 182.7     | $(11/2^{-})$         | (E2)    | Mult.: R(DCO)=1.5 5 implies M1,E2.                                                                                                                                                                                              |
| 713.5                  | $(13/2^{-})$         | 289.9 2                      | 94 10                       | 423.6     | $(9/2^{-})$          |         | -                                                                                                                                                                                                                               |
| 743.0                  | $(9/2^+)$            | 319.4 2                      | 36 4                        | 423.6     | $(9/2^{-})$          |         |                                                                                                                                                                                                                                 |
|                        |                      | 452.7 <sup>‡</sup> 2         | 69.4 <sup>@</sup> 22        | 290.3     | $(5/2^+)$            |         |                                                                                                                                                                                                                                 |
| 743.0+x                | $(13/2^+)$           | (29.5+y 5)                   |                             | 713.5     | (13/2 <sup>-</sup> ) |         | $E_{\gamma}$ : From level energy differences. Required by coincidence relationship.                                                                                                                                             |
| 903.10+x               | (17/2 <sup>+</sup> ) | 160.1 <i>1</i>               | 68 8                        | 743.0+x   | (13/2 <sup>+</sup> ) | E2      | Mult.: From $\alpha(\exp)=0.70$ 7 (2001Ko44)<br>deduced using intensity balance<br>considerations from $\gamma\gamma$ coincidence<br>spectrum produced by summing gates on $\gamma$<br>rays above the $J^{\pi}=(17/2^+)$ level. |
| 931.0                  | (11/2 <sup>-</sup> ) | 227.5 <sup>#</sup> 5         | 30.9 <sup>#</sup> 12        | 703.5     | (13/2 <sup>-</sup> ) | (M1+E2) | Mult.: R(DCO)=1.5 7 and α(exp)=0.58 23 in 2017Ve03,2014AIZX, based on the K x-ray intensity balance.                                                                                                                            |
| 1096.2                 | $(17/2^{-})$         | 382.7 <i>3</i>               | 34 4                        | 713.5     | $(13/2^{-})$         | (E2)    | Mult.: R(DCO)=1.1 3.                                                                                                                                                                                                            |
| 1102.6                 | $(13/2^{-})$         | 171.6 <sup>#</sup> 5         | 10.4 <sup>#</sup> 10        | 931.0     | $(11/2^{-})$         |         |                                                                                                                                                                                                                                 |
|                        |                      | 396.0 <sup>#</sup> 5         | 41 <sup>#</sup> 6           | 706.6     | $(15/2^{-})$         |         |                                                                                                                                                                                                                                 |
|                        |                      | 399.1 <sup>#</sup> 5         | 12.7 <sup>#</sup> 14        | 703.5     | $(13/2^{-})$         | (M1+E2) | Mult.: R(DCO)=1.2 8 implies M1,E2.                                                                                                                                                                                              |
| 1160.40+x              | $(21/2^+)$           | 257.3 1                      | 100 11                      | 903.10+x  | $(17/2^+)$           | . ,     |                                                                                                                                                                                                                                 |
| 1305.6                 | $(15/2^{-})$         | 203.0 <sup>#</sup> 5         | 15.4 <sup>#</sup> <i>13</i> | 1102.6    | $(13/2^{-})$         | (M1+E2) | Mult.: R(DCO)=1.2 5 implies M1,E2.                                                                                                                                                                                              |
|                        |                      | 374.6 <sup>#</sup> 5         | 10.0 <sup>#</sup> 13        | 931.0     | $(11/2^{-})$         |         |                                                                                                                                                                                                                                 |
|                        |                      | 599.0 <sup>#</sup> 5         | 18 <sup>#</sup> 4           | 706.6     | $(15/2^{-})$         |         |                                                                                                                                                                                                                                 |
| 1430.7                 | $(17/2^{-})$         | 727.2 <b>#</b> 5             | 14 <sup><b>#</b></sup> 4    | 703.5     | $(13/2^{-})$         |         | $I_{\gamma}$ : $\Delta I_{\gamma}=35$ in 2014AlZX is probably a typo.                                                                                                                                                           |
| 1499.40+x              | $(25/2^+)$           | 339.0 1                      | 93 10                       | 1160.40+x | $(21/2^+)$           | (E2)    | Mult.: R(DCO)=1.02 21.                                                                                                                                                                                                          |
| 1526.2                 | $(17/2^{-})$         | 220.6 <sup>#</sup> 5         | 14.2 <sup><b>#</b></sup> 12 | 1305.6    | $(15/2^{-})$         | (M1+E2) | Mult.: R(DCO)=1.0 4 implies M1,E2.                                                                                                                                                                                              |
|                        |                      | 423.6 <sup>#</sup> 5         | 10.1 <sup>#</sup> 12        | 1102.6    | $(13/2^{-})$         |         | -                                                                                                                                                                                                                               |
| 1532.0                 | $(21/2^{-})$         | 435.8 <i>3</i>               | 30 4                        | 1096.2    | $(17/2^{-})$         |         |                                                                                                                                                                                                                                 |

 $\gamma(^{177}\mathrm{Au})$ 

<sup>177</sup><sub>79</sub>Au<sub>98</sub>-3

|                                          |                          |                        | (HI,xn                     | γ) <b>2001K</b>      | 044,2017V                      | / <mark>e03,2014</mark> A | IZX (continued)                                             |  |
|------------------------------------------|--------------------------|------------------------|----------------------------|----------------------|--------------------------------|---------------------------|-------------------------------------------------------------|--|
| $\gamma$ <sup>(177</sup> Au) (continued) |                          |                        |                            |                      |                                |                           |                                                             |  |
| E <sub>i</sub> (level)                   | $\mathbf{J}_i^\pi$       | $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\dagger}$     | $E_f$                | $\mathbf{J}_{f}^{\pi}$         | Mult. <sup>&amp;</sup>    | Comments                                                    |  |
| 1577.4                                   | $(19/2^{-})$             | 870.8 <sup>#</sup> 5   | 31 <sup>#</sup> 6          | 706.6                | $(15/2^{-})$                   |                           |                                                             |  |
| 1758.3                                   | $(19/2^{-})$             | 232.1 <sup>#</sup> 5   | 8.7 <sup>#</sup> 10        | 1526.2               | $(17/2^{-})$                   |                           |                                                             |  |
|                                          |                          | 452.7 <sup>#</sup> 5   | 11.5 <sup>#</sup> 14       | 1305.6               | $(15/2^{-})$                   | (E2)                      | Mult.: $R(DCO)=1.0.7$ implies M1.E2.                        |  |
| 1909.30+x                                | $(29/2^+)$               | 409.9 1                | 59 7                       | 1499.40 + x          | $(25/2^+)$                     | (E2)                      | Mult.: $R(DCO)=0.82$ 24 implies M1,E2.                      |  |
| 2004.3                                   | $(21/2^{-})$             | 245.9 <sup>#</sup> 5   | 5.6 <sup>#</sup> 8         | 1758.3               | $(19/2^{-})$                   |                           | •                                                           |  |
|                                          |                          | 478.0 <sup>#</sup> 5   | 8.8 <sup>#</sup> 14        | 1526.2               | $(17/2^{-})$                   |                           |                                                             |  |
| 2020.2                                   | $(25/2^{-})$             | 488.2 3                | 20 3                       | 1532.0               | $(21/2^{-})$                   |                           |                                                             |  |
| 2262.5                                   | $(23/2^{-})$             | 258.2 <sup>#</sup> 5   | 6.8 <sup>#</sup> 9         | 2004.3               | $(21/2^{-})$                   |                           |                                                             |  |
|                                          |                          | 504.4 <sup>#</sup> 5   | 5.1 <sup><b>#</b></sup> 11 | 1758.3               | $(19/2^{-})$                   |                           |                                                             |  |
| 2381.20+x                                | $(33/2^+)$               | 471.9 <i>1</i>         | 45 6                       | 1909.30+x            | $(29/2^+)$                     |                           |                                                             |  |
| 2533.2                                   | $(25/2^{-})$             | 270.7 <sup>#</sup> 5   | 5.6 <sup>#</sup> 9         | 2262.5               | $(23/2^{-})$                   |                           |                                                             |  |
|                                          |                          | 528.9 <sup>#</sup> 5   | 4.8 <sup>#</sup> 10        | 2004.3               | $(21/2^{-})$                   |                           |                                                             |  |
| 2553.8                                   | $(29/2^{-})$             | 533.6 4                | 13.5 22                    | 2020.2               | $(25/2^{-})$                   |                           |                                                             |  |
| 2810.3                                   | $(27/2^{-})$             | 277 1                  |                            | 2533.2               | (25/2 <sup>-</sup> )           |                           | $E_{\gamma}$ : From 2017Ve03. Other: 280.3 keV in 2014AIZX. |  |
|                                          |                          | 548 1                  |                            | 2262.5               | (23/2 <sup>-</sup> )           |                           | $E_{\gamma}$ : From 2017Ve03. Other: 551.0 keV in 2014AIZX. |  |
| 2907.10+x                                | $(37/2^+)$               | 525.9 <i>1</i>         | 15 3                       | 2381.20+x            | $(33/2^+)$                     |                           |                                                             |  |
| 3100.4                                   | $(29/2^{-})$             | 290.2 <sup>#</sup> 5   | 6.4 <sup>#</sup> 9         | 2810.3               | $(27/2^{-})$                   |                           |                                                             |  |
|                                          |                          | 567 1                  |                            | 2533.2               | (25/2 <sup>-</sup> )           |                           | $E_{\gamma}$ : From 2017Ve03. Other: 570.4 keV in 2014AIZX. |  |
| 3121.0                                   | $(33/2^{-})$             | 567.2 5                | 8.5 22                     | 2553.8               | $(29/2^{-})$                   |                           |                                                             |  |
| 3480.6+x                                 | $(41/2^+)$               | 573.5 2                | 10.1 19                    | 2907.10+x            | $(37/2^+)$                     |                           |                                                             |  |
| 3709.0?                                  | $(37/2^{-})$             | 588.0 <sup>4</sup> 10  | ≤5<br>5 0 10               | 3121.0               | $(33/2^{-})$                   |                           |                                                             |  |
| 4096.3+x                                 | $(45/2^+)$               | 615.72                 | 5.0 18                     | 3480.6+x             | $(41/2^+)$                     |                           |                                                             |  |
| 4733.3+X<br>5444 3+x                     | $(49/2^+)$<br>$(53/2^+)$ | 691.0.3                | ∠ <i>I</i><br><1           | 4090.3+X<br>4753 3+v | $(43/2^+)$<br>$(49/2^+)$       |                           |                                                             |  |
| 6158.2 + x?                              | $(57/2^+)$               | $714.0^{a}$ 10         | <1                         | 5444.3 + x           | $(\frac{+3}{2})$<br>$(53/2^+)$ |                           |                                                             |  |
|                                          | (2)/- )                  |                        |                            | - · · · · · · A      | (20)-)                         |                           |                                                             |  |

<sup>†</sup> From 2001Ko44, 2001KoZO. I $\gamma$  are relative to I $\gamma$ (257.3 $\gamma$ )=100, deduced from a  $\gamma$ -ray spectrum produced by gating on the E $\alpha$ =6122-keV line, depopulating the  $J^{\pi}$ =(11/2<sup>-</sup>) isomer, unless otherwise stated.

<sup>‡</sup> Placement of this  $\gamma$ -ray in the level scheme is from 2014AlZX.

<sup>#</sup> From 2014AIZX. Placement of this  $\gamma$ -ray in the level scheme is from 2017Ve03.

<sup>(a)</sup> From 2014AlZX, relative to I $\gamma(257.3\gamma)$ =100, deduced from a  $\gamma$ -ray spectrum produced by gating on the E $\alpha$ =6153-keV line, depopulating the  $J^{\pi}$ =(1/2<sup>+</sup>) ground state.

& From the measured DCO ratios (2014AIZX) and total electron conversion coefficients (2001Ko44,2014AIZX), and the observed band structures.

<sup>*a*</sup> Placement of transition in the level scheme is uncertain.



<sup>177</sup><sub>79</sub>Au<sub>98</sub>



<sup>177</sup><sub>79</sub>Au<sub>98</sub>



(HI,xnγ) 2001Ko44,2017Ve03,2014AlZX

