176 **Yb**(γ , γ') **1990Zi01**

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	M. S. Basunia	NDS 107,791 (2006)	15-Sep-2005				

Enriched targets of ¹⁷⁶Yb were irradiated with 4.1-MeV endpoint bremsstrahlung radiation. Measured E γ , I γ at θ =90° and 127°. Detector: high-purity germanium. Deduced $\Gamma^2_{\gamma 0}/\Gamma$ and branching ratios $\Gamma_{\gamma}/\Gamma_{\gamma 0}$.

¹⁷⁶Yb Levels

E(level)	$J^{\pi \dagger}$	T _{1/2} ‡	Comments					
0.0	0+ <i>a</i>							
82 ^x	2^{+a}							
2163	1 [@]	11.5 fs 3	$\Gamma^{2}_{\gamma 0}/\Gamma$ (eV)=0.015 5. $\Gamma^{2}_{\gamma 0}$ =0.024 7.					
2453	1 [@]	7.7 fs 17	$\Gamma^{2}_{-\alpha}/\Gamma$ (eV)=0.030 8. $\Gamma^{2}_{-\alpha}=0.042$ 9.					
2704	1 [@]	7.4 fs 15	$\Gamma^{2}_{\gamma 0}/\Gamma$ (eV)=0.033 8. $\Gamma^{2}_{\gamma 0}=0.045$ 9.					
2938	1 [@]	10 fs 4	$\Gamma_{\gamma 0}^{2}/\Gamma$ (eV)=0.028 15. $\Gamma_{\gamma 0}^{2}$ =0.036 15.					
3126	1 ^{-#}	3.8 fs 16	$\Gamma_{\gamma 0}^{2}/\Gamma$ (eV)=0.011 6. $\Gamma_{\gamma 0}^{2}$ =0.036 15.					
3143	1-#	2.2 fs 16	$\Gamma_{\gamma 0}^{2}/\Gamma$ (eV)=0.021 7. $\Gamma_{\gamma 0}^{2}$ =0.067 19.					
3456	1@	6 fs 3	$\Gamma^{2}_{\gamma 0}/\Gamma$ (eV)=0.025 <i>17</i> . $\Gamma^{2}_{\gamma 0}$ =0.045 <i>23</i> .					
3480	1 ^{-#}	8 fs 4	$\Gamma_{\gamma 0}^2 / \Gamma$ (eV)=0.011 8. $\Gamma_{\gamma 0}^{=}=0.026$ 14.					
3516	1@	5 fs 3	$\Gamma^{2}_{\gamma 0}/\Gamma$ (eV)=0.021 <i>14</i> . $\Gamma^{2}_{\gamma 0}$ =0.043 22. K=1 is uncertain.					
3540	1-#	3.2 fs 15	$\Gamma^2_{\gamma 0}/\Gamma$ (eV)=0.018 <i>10.</i> $\Gamma_{\gamma 0}$ =0.051 <i>23.</i>					
3557	1@	3.1 fs 9	$\Gamma_{\gamma 0}^{2}/\Gamma$ (eV)=0.038 <i>13</i> . $\Gamma_{\gamma 0}^{0}$ =0.075 <i>21</i> . K=1 is uncertain.					
3780	1 ^{-#}	1.6 fs 5	$\Gamma^2_{\gamma 0}/\Gamma$ (eV)=0.034 <i>13</i> . $\Gamma^2_{\gamma 0}$ =0.099 <i>31</i> .					
3845	@	1.7 fs 9	$\Gamma_{\gamma 0}^{2}/\Gamma$ (eV)=0.075 45. $\Gamma_{\gamma 0}^{2}$ =0.14 7.					

[†] Because of low momentum transfer, photon scattering nearly exclusively excites states with J=1 or 2 in ¹⁷⁶Yb. J=1 assignment is from $\gamma(\theta)$.

[‡] Deduced by evaluator from $\Gamma_{\gamma 0}$ and branching ratio $\Gamma_{\gamma 0}/\Gamma$, assuming that only the transitions to the first $J^{\pi}=2^+$ significantly contribute to the level de-excitation.

[#] $K^{\pi}=0^{-}$ from a comparison of reduced transition probabilities with those predicted by the Alaga rules. $\pi=-$ based on model-dependent arguments.

[@] K=1 from a comparison of reduced transition probabilities with those predicted by the Alaga rules. Parity is unknown.

[&] From Adopted Levels, rounded to the nearest keV.

^a From Adopted Levels.

					176 Yb(γ,γ') 1990Zi01 (continued)						
					γ ⁽¹⁷⁶ Yb)						
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [‡]	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [‡]
82	2^{+}	82		$0.0 0^+$		3456	1	3456	100	$0.0 0^+$	D
2163	1	2081	65 14	82 2+		3480	1-	3398	100	82 2+	
		2163	100	$0.0 \ 0^+$	D			3480	76 <i>34</i>	$0.0 \ 0^+$	
2453	1	2371	41 6	82 2+		3516	1	3434	98 <i>3</i> 8	82 2+	
		2453	100	$0.0 \ 0^+$	D			3516	100	$0.0 \ 0^+$	D
2704	1	2622	37 5	$82 2^+$		3540	1-	3458	100	$82 2^+$	
		2704	100	$0.0 \ 0^+$	D			3540	56 18	$0.0 \ 0^+$	D
2938	1	2856	30 10	$82 2^+$	D	3557	1	3475	97 19	$82 2^+$	
		2938	100	$0.0 0^+$	D			3557	100	$0.0 0^+$	D
3126	1-	3044	100	82 2+		3780	1-	3698	100	82 2+	
		3126	43 <i>13</i>	$0.0 0^+$				3780	53 11	$0.0 0^+$	D
3143	1-	3061	100	82 2+		3845		3763	87 <i>30</i>	82 2+	
		3143	46 7	$0.0 0^+$	D			3845	100	$0.0 \ 0^+$	
3456	1	3374	80 <i>36</i>	82 2+							

[†] Measured values for transitions to g.s. and from level energy differences for transitions to the 82-keV level ($J^{\pi}=2^+$). [‡] From $\gamma(\theta)$: W(90°)/W(127°) \approx 0.7 for dipole radiation; \approx 2 for quadrupole radiation.

2

176 Yb(γ, γ') **1990Zi01**

Level Scheme

Intensities: Relative photon branching from each level

