History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	M. S. Basunia	NDS 107, 791 (2006)	15-Sep-2005					

Parent: ¹⁷⁶Re: E=0.0; $J^{\pi}=3^+$; $T_{1/2}=5.3 \text{ min } 3$; $Q(\varepsilon)=5580 \ 40$; $\%\varepsilon+\%\beta^+$ decay=100.0

Others: 1972Be89, 1970Go20, 1967Na17. 2001Ki10: 176 Re produced from an 176 Ir grandparent activity made in the 149 Sm(31 P,4n) reaction. Measured: E γ , I γ , γ - γ coin,

 $\gamma(\theta)$, α , and M. Detector: CAESAR array of six Compton-suppressed Ge detectors, and electron spectrometer.

1977Be72: measured E γ , I γ , $\gamma\gamma$ coin. Detectors:Ge(Li). 1977Ha24: activity produced by ¹⁸¹Ta(α ,9n), E(α)=133 MeV. Measured E γ , I γ . Detector:Ge(Li). 1970Go20: activity produced by ¹⁸⁰W(p,5n), E(p)=54 MeV. Measured E γ , I γ . Detector:Ge(Li).

¹⁷⁶W Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0#	0+	2.5 h <i>1</i>	
109.1 [#] 8	2+		
349.4 [#] 9	4+		J^{π} : 240.3 γ E2 to the inband 2 ⁺ state.
700.8 [#] 10	6+		J^{π} : 351.4 γ E2 to the inband 4 ⁺ state.
844.1 ^{&} 13	0+		J^{π} : Supported by the γ - γ angular correlation of the 735 keV transition and consistent with the 0 ⁺ to 2 ⁺ state transition in 2001Ki10.
931.4 ^{&} 10	2^{+}		J^{π} : 582.0 γ E2 to the 4 ⁺ state.
1041.6 [@] 8	2+		
1118.1 ^{&} 10	4+		J^{π} : 768.7 γ E0+E2+M1 to the 4 ⁺ state at 349.3 keV level. 1009.0 γ E2 to the 2 ⁺ state at 109.1 keV level.
1128.9 ^a 9	2^{-}		J^{π} : 1019.9 γ E1 to the 2 ⁺ state at 109.1 keV level.
1180.3 [@] 10	3+		
1198.3 ^a 10	3-		J^{π} : 849.1 γ E1 to the 4 ⁺ state at 349.3 keV level.
1303.2 ^{<i>a</i>} 10	4-		
1322.4 [@] 11	4+		
1397.6 ^{&} 11	6+		J^{π} : 696.6 γ E0+E2+M1 to the 6 ⁺ state at 700.7 keV level. The E0 component supports the assignment as J_{ρ}^{+} to J_{σ}^{+} transition.
1402.0 ^{<i>a</i>} 10 1438.2 13 1497.4 10	5-		
1519.2 ^(a) 11 1526.4 13 1539.2 13 1586.4 14 1587.8 11 1591.0 14 1595.4 12 1658.9 14	5+		
1661.0 <i>11</i> 1683.9 <i>13</i> 1686.5 <i>11</i> 1701.6 <i>13</i> 1709.7 <i>11</i> 1736.7 <i>13</i> 1745.4 <i>14</i> 1887.1 <i>11</i> 1924.1 <i>14</i>	(3,4,5)-		J ^{π} : 1311.8 γ E1 to the 4 ⁺ state at 349.5 keV level.

¹⁷⁶W Levels (continued)

[†] Deduced by evaluator from a least-squares fit to γ -ray energies assuming $\Delta E=1$ keV.

 \ddagger From multipolarity, rotational band assignment, and energy systematics (2001Ki10).

[#] $K^{\pi}=0^+$ g.s. rotational band.

[@] $K^{\pi}=2^+$ quasi γ -vibrational band.

[&] $K^{\pi}=0^+$ quasi β^- vibrational band.

 $a K^{\pi} = (2^{-}).$

ε, β^+ radiations

E(decay)	E(level)	$I\beta^+$ [†]	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
$(3.66 \times 10^3 4)$	1924.1	0.19 5	0.46 12	7.23 12	0.65 17	av E β =1190 18; ε K=0.589 8; ε L=0.0965 13; ε M+=0.0298 4
$(3.69 \times 10^3 4)$	1887.1	0.16 3	0.37 8	7.34 10	0.53 11	av Eβ=1206 18; εK=0.582 8; εL=0.0953 13; εM+=0.0294 4
$(3.83 \times 10^3 4)$	1745.4	0.17 4	0.35 7	7.40 10	0.52 11	av Eβ=1270 19; εK=0.555 8; εL=0.0907 13; εM+=0.0280 4
$(3.84 \times 10^3 4)$	1736.7	0.59 5	1.21 10	6.86 5	1.80 15	av Eβ=1274 19; εK=0.553 8; εL=0.0905 13; εM+=0.0279 4
$(3.87 \times 10^3 4)$	1709.7	0.32 6	0.65 13	7.14 9	0.97 19	av Eβ=1287 19; εK=0.548 8; εL=0.0896 13; εM+=0.0277 4
$(3.88 \times 10^3 4)$	1701.6	0.27 4	0.52 7	7.23 7	0.79 11	av Eβ=1290 19; εK=0.546 8; εL=0.0893 13; εM+=0.0276 4
$(3.89 \times 10^3 4)$	1686.5	0.20 4	0.40 7	7.36 9	0.60 11	av Eβ=1297 19; εK=0.544 8; εL=0.0889 13; εM+=0.0274 4
$(3.90 \times 10^3 4)$	1683.9	0.29 4	0.57 7	7.20 7	0.86 11	av Eβ=1298 19; εK=0.543 8; εL=0.0888 13; εM+=0.0274 4
$(3.92 \times 10^3 4)$	1661.0	1.5 1	2.8 2	6.51 5	4.3 <i>3</i>	av Eβ=1309 19; εK=0.539 8; εL=0.0880 13; εM+=0.0272 4
$(3.92 \times 10^3 4)$	1658.9	0.19 3	0.36 5	7.41 7	0.55 8	av Eβ=1310 19; εK=0.538 8; εL=0.0880 13; εM+=0.0272 4
$(3.98 \times 10^3 4)$	1595.4	0.34 6	0.61 10	7.19 8	0.95 16	av E β =1338 19; ε K=0.526 8; ε L=0.0860 13; ε M+=0.0265 4
$(3.99 \times 10^3 4)$	1591.0	0.13 2	0.23 3	7.62 7	0.36 5	av Eβ=1340 19; εK=0.525 8; εL=0.0858 13; εM+=0.0265 4
$(3.99 \times 10^3 4)$	1587.8	0.43 6	0.76 10	7.10 7	1.19 15	av Eβ=1342 19; εK=0.525 8; εL=0.0857 13; εM+=0.0265 4
$(3.99 \times 10^3 4)$	1586.4	0.16 4	0.27 6	7.54 11	0.43 10	av Eβ=1342 19; εK=0.525 8; εL=0.0857 13; εM+=0.0264 4
$(4.04 \times 10^3 \ 4)$	1539.2	0.42 5	0.69 8	7.15 6	1.11 13	av Eβ=1364 19; εK=0.516 8; εL=0.0842 13; εM+=0.0260 4
$(4.05 \times 10^3 \ 4)$	1526.4	0.15 5	0.26 8	7.59 14	0.41 13	av Eβ=1370 19; εK=0.513 8; εL=0.0838 13; εM+=0.0259 4
$(4.06 \times 10^3 \ 4)$	1519.2	0.58 5	0.94 8	7.02 5	1.52 13	av Eβ=1373 19; εK=0.512 8; εL=0.0836 13; εM+=0.0258 4
$(4.08 \times 10^3 \ 4)$	1497.4	0.57 6	0.92 9	7.04 6	1.49 15	av Eβ=1383 19; εK=0.508 8; εL=0.0829 13; εM+=0.0256 4
$(4.14 \times 10^3 4)$	1438.2	0.41 7	0.61 10	7.22 8	1.02 17	av Eβ=1410 19; εK=0.497 8; εL=0.0810 13; εM+=0.0250 4
$(4.18 \times 10^3 4)$	1402.0	0.76 9	1.12 13	6.97 6	1.88 21	av Eβ=1426 19; εK=0.490 8; εL=0.0799 13; εM+=0.0247 4
$(4.18 \times 10^3 4)$	1397.6	0.32 5	0.47 8	7.35 8	0.79 13	av Eβ=1428 19; εK=0.489 8; εL=0.0798 13; εM+=0.0246 4
$(4.26 \times 10^3 4)$	1322.4	1.5 1	2.0 2	6.73 5	3.5 <i>3</i>	av Eβ=1463 19; εK=0.475 8; εL=0.0775 13; εM+=0.0239 4
$(4.28 \times 10^3 4)$	1303.2	1.7 <i>1</i>	2.2 2	6.69 5	3.9 <i>3</i>	av Eβ=1471 19; εK=0.472 8; εL=0.0769 12; εM+=0.0237 4
$(4.38 \times 10^3 4)$	1198.3	2.1 2	2.6 2	6.65 5	4.7 4	av Eβ=1519 19; εK=0.453 8; εL=0.0738 12; εM+=0.0228 4
$(4.40 \times 10^3 \ 4)$	1180.3	2.4 1	2.9 2	6.60 4	5.3 <i>3</i>	av Eβ=1528 19; εK=0.450 8; εL=0.0733 12; εM+=0.0226 4
$(4.45 \times 10^3 \ 4)$	1128.9	1.4 1	1.7 2	6.86 5	3.1 <i>3</i>	av Eβ=1551 19; εK=0.441 7; εL=0.0718 12; εM+=0.0221 4
$(4.46 \times 10^3 \ 4)$	1118.1	3.5 2	4.0 3	6.48 4	7.5 5	av E β =1556 19; ε K=0.439 7; ε L=0.0715 12; ε M+=0.0221 4

E(decay)	E(level)	$\mathrm{I}\beta^+$ †	$\mathrm{I}arepsilon^\dagger$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
$(4.54 \times 10^3 \ 4)$	1041.6	0.48 11	0.52 12	7.38 11	1.00 23	av Eβ=1591 19; εK=0.426 7; εL=0.0693 12; εM+=0.0214 4
$(4.65 \times 10^3 \ 4)$	931.4	2.7 2	2.7 2	6.69 5	5.4 4	av E β =1642 19; ε K=0.407 7; ε L=0.0662 11; ε M+=0.0204 4
$(4.74 \times 10^3 \ 4)$	844.1	0.40 5	0.36 5	7.57 7	0.76 10	av Eβ=1682 19; εK=0.393 7; εL=0.0639 11; εM+=0.0197 4
$(4.88 \times 10^3 \ 4)$	700.8	2.0 3	1.7 3	6.94 8	3.7 6	av Eβ=1748 19; εK=0.371 7; εL=0.0602 11; εM+=0.0186 4
$(5.23 \times 10^3 \ 4)$	349.4	16.0	10.2	6.2	26.2	av Eβ=1910 19; εK=0.320 6; εL=0.0519 9; εM+=0.0160 3
$(5.47 \times 10^3 \ 4)$	109.1	63	3.5 18	6.71 22	10 5	av E β =2021 19; ε K=0.290 5; ε L=0.0469 8; ε M+=0.01447 25

ϵ, β^+ radiations (continued)

[†] Absolute intensity per 100 decays.

$\gamma(^{176}W)$

I γ normalization: From decay scheme assuming no ε population to the g.s. from ¹⁷⁶Re (J^{π}=3⁺), and Ti(109 γ + 844 γ + 1040 γ + 1117 γ)=100%.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [†]	α@	Comments
87.1	4.1 10	1128.9	2-	$1041.6 \ 2^+$			
109.1	465 16	109.1	2+	0.0 0+	E2	2.81	$\alpha(K)=0.760\ 23;\ \alpha(L)=1.55\ 5;\ \alpha(M)=0.389\ 12;\ \alpha(N+)=0.114\ 4\ \%$ ly=25.81 56.
122.8	4717	1203.2	4-	1180 3 3+			Muit.: from adopted gammas.
122.0	4.717	1303.2	4 2-	$1160.5 \ 3$			
174.2	6617	1202.2	5 4 ⁻	$1041.0 \ 2$ 1128 0 2 ⁻			
174.5	0.017	1303.2	4 4	1120.9 2 021 4 2 ⁺			
203.0	2.14 2310	1110.1	4 5-	931.4 Z			
240.3	1000 29	349.4	3 4 ⁺	109.1 2 ⁺	E2	0.171	$\alpha(K)=0.104$ 4; $\alpha(L)=0.0508$ 16; $\alpha(M)=0.0125$ 4; $\alpha(N+)=0.00363$ 11
							Mult.: from α (K)exp=0.104 7, α (L)exp=0.045 3, and α (M)exp=0.0123 11.
292.1	6.2 12	1595.4		1303.2 4-			
351.4	151 8	700.8	6+	349.4 4+	E2	0.0540	$\alpha(K)=0.0381 \ 12; \ \alpha(L)=0.0122 \ 4; \ \alpha(M)=0.00294 \ 9; \ \alpha(N+)=0.00086 \ 3$ Mult : from $\alpha(K)=0.050 \ 4$
368 5	9116	1497 4		1128 9 2-			watthe noise u(R)exp=0.050 + .
388.1	7.6 16	1586.4		1198.3 3-			Mult.: E2 from α (K)exp=0.027 7 in 2001Ki10, but no J ^{π} for 1586.4 keV level was reported.
397.2	11.4 25	1595.4		1198.3 3-			1
417.3	11.0 16	1118.1	4+	700.8 6+			
488.2	3.9 12	1686.5		1198.3 3-			
542.7	9.7 19	1661.0	$(3,4,5)^{-}$	1118.1 4+			
557.5	7.2 14	1686.5		1128.9 2-			
582.0	36.8 19	931.4	2+	349.4 4+	E2	0.0147	$\alpha(K)=0.0115 4$; $\alpha(L)=0.00245 8$ Mult.: from $\alpha(K)=0.002 1$.
627.3	9.7 19	1745.4		1118.1 4+			
659.6	6.6 8	1591.0		931.4 2+			

Continued on next page (footnotes at end of table)

$\gamma(^{176}W)$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E _i (level)	\mathbf{J}_i^π	$E_f = J_f^{\pi}$	Mult. [†]	δ	α [@]	Comments
692.1 695.1	2.1 8	1041.6	2+	$349.4 4^+$				
696 6	10 3 16	1397.6	6+	$700.8 6^+$	E0+E2+M1			Mult : from $\alpha(K) \exp(0.049.9)$
701.3	24 3	1402.0	5-	700.8 6+	L01 L21 MI			
735.0	14.1 16	844.1	0^{+}	109.1 2+				
768.7	96 4	1118.1	4+	349.4 4+	E0+E2+M1	-2.2		Mult.: from α (K)exp=0.066 7, α (L)exp=0.0122 16, α (M)exp=0.0033 8. M1 is 21%. δ : uncertainty +0.6 -1.2. A_{22} =+0.05 7, A_{44} =+0.23 8.
818.4	8.1 10	1519.2	5+ 2+	$700.8 6^+$	E0 · E2 · M1	27		Multi fram (K) and
822.2	/1 3	931.4	21	109.1 2	E0+E2+M1	-2.7		Mult.: from α (K)exp=0.056 4, and α (L)exp=0.0034 4. M1 is 13.7%. δ : uncertainty +0.4 -0.5. A ₂₂ =+0.21 8, and A ₄₄ =+0.2 9.
830.9	19.0 17	1180.3	3+	349.4 4+				α (K)exp=0.0034 <i>12</i> .
844.0 ^a	0.24 6	844.1	0^+	$0.0 0^+$	EO			I_{γ} : K conversion electron intensity.
849.1	100 5	1198.3	3-	349.4 4+	E1		0.00243	α =0.00243; α (K)=0.00204 7; α (L)=0.00029 <i>1</i> Mult.: from α (K)exp=0.0026 8.
932.4	36.4 17	1041.6	2+	109.1 2+	E0+E2+M1	+3.0		Mult.: from α(K)exp=0.0083 <i>16</i> . M1 is 11.1%. δ: uncertainty +1.0 -0.7. A ₂₂ =-0.22 <i>14</i> and A ₄₄ =+0.24 <i>16</i> .
953.9	67 4	1303.2	4-	349.4 4+				22 11 11 11
958.1	10.3 14	1658.9		700.8 6+				
973.0	39.9 21	1322.4	4+	349.4 4+	E2+M1	>30	0.00481	$\begin{array}{l} \alpha = 0.00481; \ \alpha(\mathrm{K}) = 0.00392; \\ \alpha(\mathrm{L}) = 0.00067 \\ \mathrm{A}_{22} = -0.14 \ 8 \ \mathrm{A}_{44} = +0.22 \ 10. \end{array}$
1009.0 ^{&}	50 ^{&} 3	1118.1	4+	109.1 2+	E2		0.00447	α =0.00447; α (K)=0.00365 <i>11</i> ; α (L)=0.00061 <i>2</i> Mult.: from α (K)exp=0.45 <i>10</i> .
1009.0 <mark>&</mark>	14 ^{&} 3	1709.7		700.8 6+				· · · ·
1019.9	76 4	1128.9	2-	109.1 2+	E1		0.00173	α =0.00173; α (K)=0.00145 5; α (L)=0.00021 <i>1</i> Mult.: from α (K)exp<0.001.
1041.6	29.7 21	1041.6	2+	$0.0 0^+$				%Iγ=1.65 <i>13</i> .
1048.4	4.3 16	1397.6	6 ⁺	$349.4 4^+$				
1052.5	8.7 10 84 <i>3</i>	1180.3	3 3 ⁺	109.1 2 ⁺				Mult.: 1071 γ E2 assignment from α (K)exp=0.0032 7 in 2001Ki10 is not consistent with the J ^{π} assignment of the depopulating level.
1117.0 ^{‡a}	56 [‡] 14	1118.1	4+	0.0 0+				%Iv=3.02 74.
1148.1	4.8 11	1497.4	·	349.4 4+				,
1169.8	20.2 19	1519.2	5+	349.4 4+				
1189.8	20.7 21	1539.2		349.4 4+				
1213.2	26 4	1322.4	4+	$109.1 \ 2^+$				
1223.3	12 <i>3</i> 13610	1924.1 1587 8		/00.8 6 ⁺ 3/0 / /+				
1238.2	13.0 <i>19</i> 70 <i>4</i>	1661.0	(3,4,5) ⁻	349.4 4 ⁺ 349.4 4 ⁺	E1		0.00110	α =0.00110; α (K)=0.00093 3; α (L)=0.00013
1329.1	19 <i>3</i>	1438.2		109.1 2+				Mult.: from $\alpha(K)$ exp=0.0012 2.

Continued on next page (footnotes at end of table)

$\gamma(^{176}W)$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}
1334.5	15.9 19	1683.9		349.4 4+	1417.3	7.6 23	1526.4		109.1	2^{+}
1352.2	14.7 19	1701.6		349.4 4+	1478.8	8.5 16	1587.8		109.1	2^{+}
1360.2	4.1 14	1709.7		349.4 4+	1537.8	3.1 12	1887.1		349.4	4^{+}
1388.3	13.8 16	1497.4		109.1 2+	1777.9	6.8 15	1887.1		109.1	2^{+}

[†] From 2001Ki10, unless otherwise specified.

[‡] From 1977Be72. I γ multiplied by 10 to normalize to the 240.3 γ I γ .

[#] For absolute intensity per 100 decays, multiply by .0538 21.

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[&] Multiply placed with intensity suitably divided.

^{*a*} Placement of transition in the level scheme is uncertain.

¹⁷⁶Re ε decay 2001Ki10,1977Be72,1977Ha24

Decay Scheme

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays @ Multiply placed: intensity suitably divided

¹⁷⁶Re ε decay 2001Ki10,1977Be72,1977Ha24

7