		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. S. Basunia	NDS 107, 791 (2006)	15-Sep-2005

1999Ca08: Target: Ho rolled foil. Projectile: ¹⁶O, E=101 MeV. Detector: GASP array, consists of 39 Compton suppressed large volume Ge detectors, a planar detector and multiplicity filter of 80 bismuth germinate (BGO) elements. Measured: E γ , I γ , DCO ratio, $\gamma\gamma$ coin, $\gamma(\theta)$, α .

1994Kr09, 1995Kr01: $E(^{16}O)=101$ MeV, measured $E\gamma$, $I\gamma$, $\gamma\gamma$ coin. Detectors: 40 Compton suppressed germanium, 80 BGO-element filter. Other: 1987ChZC.

¹⁷⁶Re Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0 ^{<i>a</i>}	3+		J^{π} : configuration: $\pi(1/2[541]) \otimes \nu 1/2[521]$ with a band head at 3 ⁺ . Deduced experimental alignment is in good agreement with theory.
0.0+x [@]	(5 ⁻)		J^{π} : configuration: $\pi(1/2[541]) \otimes \nu(7/2[633])$. Measured B(M1)/B(E2) value and calculation result are consistent with the configuration.
0.0+y ^b	J		J^{π} : J=4 ⁺ or 5 ⁺ , from similarities with the bands in ¹⁷⁴ Lu and ¹⁷⁶ Ta.
14.8+x ^c	(7^{+})		J ^{π} : Possible configuration: $\pi 9/2[514] \otimes v 5/2[512]$. 99.5 γ E1 from (8 ⁻) state.
37.5+x [@]	(6 ⁻)		
44.1+y ^b	J+1		
76.2 ^{<i>a</i>}	5+		J^{π} : Inband 76.2 γ E2 to 3 ⁺ g.s.
93.7+x	(7 ⁻)		
114.1+y ^b	J+2		
114.8+x [#]	(8-)	30 ns <i>3</i>	J^{π} : 99.5 γ E1 to (7 ⁺) state at 14.8+x.
141.3 ^a	4+		$T_{1/2}$: From time spectrum, setting a gate on the 99.5 γ in 1999Ca08. J ^{π} : 65.0 γ M1+(E2) to 5 ⁺ state.
156.4+x [@]	(8 ⁻)		
184.8+x [#]	(9 ⁻)		J^{π} : 70.5 γ M1+(E2) to (8 ⁻) state.
194.5+x ^c	(8+)		
$208.7 + x^{a}$	(7^{+})		
211.5+y ^b	J+3		
247.5 ^a	7+		
263.6+x	(9 ⁻)		
$300.6 + x^{\alpha}$	(8^+)		M_{1} 56 0. M1 + E2 to 7 ⁺ -tota - 227 2. M1 + E2 to 5 ⁺ -tota
303.7	(10^{-})		J^{+} 50.07 M1+E2 to J^{+} state. 227.37 M1+E2 to J^{+} state.
$307.2 + x^{n}$	(10)		
$355.5+y^{\circ}$	J+4		
$330.9 + x^{-1}$	(10) (9^+)		
$439.7 + x^{d}$	(9^+)		
$468.1 + x^{\#}$	(11^{-})		
$482.6 + x^{b}$	(11) I+5		
515.3 ^{<i>a</i>}	9+		
533.1+x [@]	(11^{-})		
562.0 ^a	8+		
602.3+x ^d	(10^{+})		
621.4+x ^C	(10^{+})		
654.3+y ^b	J+6		
657.4+x [@]	(12 ⁻)		

1999Ca08,1995Kr01,1994Kr09 (continued)

				¹⁷⁶ Re	Levels (co	ntinued)	
E(level) [†]	Jπ‡	E(level) [†]	Jπ‡	E(level) [†]	Jπ‡	E(level) [†]	Jπ‡
665.3+x [#]	(12^{-})	1531.1+x ^d	(14^{+})	2378.7+x ^d	(17^{+})	3654.3+x ^d	(21^{+})
803.6+x d	(11^{+})	1566.3+y <mark>b</mark>	J+10	2378.7 ^a	17+	3655.3+x &	(19,21)
851.5+y ^b	J+7	1577.3+x [@]	(16 ⁻)	2390.6+x ^{&}	(15,17)	3765.0+x [#]	(22 ⁻)
852.9+x ^c	(11^{+})	1630.0+x ^c	(14^{+})	2423.3+y ^b	J+13	4025.6+x ^{&}	(20,22)
874.6 ^a	11^{+}	1691.3+x ^{&}	(12,14)	2511.3+x ^c	(17^{+})	4040.8+x [@]	(23 ⁻)
887.9+x [#]	(13-)	1709.0+x [#]	(16 ⁻)	2572.8+x [@]	(19 ⁻)	4146.0+x [#]	(23 ⁻)
907.5+x [@]	(13 ⁻)	1801.7+x ^d	(15^{+})	2678.4+x ^{&}	(16,18)	4206.9 ^a	23+
911.3 ^a	10^{+}	1825.7 ^a	15+	2686.9+x ^d	(18^{+})	4452.2+x [@]	(24 ⁻)
1027.8+x ^d	(12^{+})	1841.3+y ^b	J+11	2690.7+x [#]	(19 ⁻)	4533.5+x [#]	(24 ⁻)
1066.3+x [@]	(14 ⁻)	1842.8 ^{<i>a</i>}	14^{+}	2762.4+x ^C	(18^{+})	4861.3+x [@]	(25 ⁻)
1068.8+y ^b	J+8	1892.6+x ^{&}	(13,15)	2869.7+x [@]	(20 ⁻)	4932.1 ^{<i>a</i>}	25+
1100.8+x ^C	(12^{+})	1907.3+x ^c	(15^{+})	2944.5 ^a	19+	5321.3+x [#]	(25 ⁻)
1140.5+x [#]	(14-)	1936.8+x [@]	(17^{-})	2987.7+x <mark>&</mark>	(17,19)	5322.6+x [@]	(26 ⁻)
1253.9+x ^{&}	(10,12)	2022.4+x [#]	(17^{-})	2996.2+x ^d	(19 ⁺)	5715.8 ^a	27+
1268.4+x ^d	(13 ⁺)	2087.7+x ^d	(16 ⁺)	3037.5+x [#]	(20^{-})	5729.3+x [@]	(27 ⁻)
1309.0+y ^b	J+9	2127.5+x ^{&}	(14,16)	3277.5+x [@]	(21^{-})	6127.7+x [#]	(26 ⁻)
1315.9 ^a	13+	2132.3+y b	J+12	3315.5+x ^{&}	(18,20)	6221.6+x [@]	(28 ⁻)
1342.3 ^a	12^{+}	2181.5+x [@]	(18 ⁻)	3318.1+x ^d	(20^{+})	6555.9 ^a	29+
1360.2+x ^c	(13 ⁺)	2190.8+x ^C	(16 ⁺)	3401.0+x [#]	(21^{-})	6959.7+x [#]	(27 ⁻)
1377.3+x [@]	(15 ⁻)	2347.9+x [#]	(18 ⁻)	3545.3 ^a	21^{+}	7822.7+x [#]	(28 ⁻)
1414.8+x [#]	(15 ⁻)	2376.0 ^a	16+	3629.2+x [@]	(22^{-})		

 165 Ho(16 O,5n γ)

[†] Energy levels from 1999Ca08, except otherwise noted. Energy levels of bands A, B, C, F, G; and band E; were based on 0.0+x; and 0.0+Y levels, respectively (by evaluator).

^{\ddagger} J^{π} assignment from measured DCO ratios in 1999Ca08 and rotational band structure, unless otherwise specified.

[#] Band A: configuration: $\pi 9/2[514] \otimes v7/2[633]$.

[@] Band B: configuration: $\pi(1/2[541]) \otimes \nu(7/2[633])$.

& Band C.

^{*a*} Band D: configuration: $\pi(1/2[541]) \otimes \nu 1/2[521]$, doubly decoupled band.

^b Band E.

^{*c*} Band F: Possible configuration: $\pi 9/2[514] \otimes v 5/2[512]$.

^d Band G: Possible configuration: $\pi 5/2[402] \otimes v7/2[633]$.

 $\gamma(^{176}\text{Re})$

R(DCO) from 1999Ca08: $I\gamma_{gate=\theta_2}(\theta_1)/I\gamma_{gate=\theta_1}(\theta_2)$, $(\theta_1=31.7^\circ, 36^\circ, 144^\circ, 148.3^\circ \text{ and } \theta_2=90^\circ)$ determined from coincidence spectra, setting gates on stretched E2 transitions on both axes of the DCO matrix.

E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	Comments
37.5	37.5+x	(6 ⁻)	0.0+x	(5 ⁻)		
44.1	44.1+y	J+1	0.0+y	J		
46.5 <mark>&</mark>	562.0	8+	515.3	9+		
56.0 <mark>&</mark>	303.7	6+	247.5	7+	M1+E2 [@]	Mult.: from $\alpha(\exp)=6.3$ (from intensity balance in 1999Ca08).
56.2	93.7+x	(7^{-})	37.5+x	(6 ⁻)		

			16	⁵ Ho(¹⁶ O,5	nγ)	1999Ca08,19	95Kr01,1994	4Kr09 (continued)
						$\gamma(^{176}\text{Re})$ (co	ontinued)	
E_{γ}^{\dagger}	I_{γ} ‡	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	δ^{e}	Comments
62.7		156.4+x	(8 ⁻)	93.7+x	(7 ⁻)			I _γ : I _γ (62.7):I _γ (118.9)=100:17(3) from Branching ratio 0.17 <i>3</i> .
65.0 <mark>&</mark>	17	141.3	4+	76.2	5+	M1+E2 [@]		Mult.: from $\alpha(\exp)=6.05$ (from intensity balance in 1999Ca08).
70.0		114.1+y	J+2	44.1+y	J+1			I _γ : Iγ(70.0):Iγ(114.3)=100:5(2) from Branching ratio 0.05 2.
70.5		184.8+x	(9-)	114.8+x	(8-)	M1+E2 [@]	0.16 8	Mult.: from $\alpha(\exp)=3.0$ 4 (from intensity balance in 1999Ca08).
76.2 ^b	58	76.2	5+	0.0	3+	E2		R(DCO)=1.1 <i>1</i> . Mult.: from $\alpha(\exp)=13 l$ (from intensity balance in 1999Ca08).
91.9 93.3	107	300.6+x 356.9+x	(8 ⁺) (10 ⁻)	208.7+x 263.6+x	(7 ⁺) (9 ⁻)	M1+E2		I _{γ} : I γ (93.3):I γ (200.2)=100:89(6) from Branching ratio 0.89 6.
97.4	27	211.5+y	J+3	114.1+y	J+2	M1+E2		R(DCO)=0.7 <i>1</i> . I _γ : I _γ (97.4):I _γ (167.6)=100:19(5) from Branching ratio 0.19 5. R(DCO)=0.71 10
99.5 ^d	1000	114.8+x	(8-)	14.8+x	(7+)	E1		R(DCO)=0.90 3. Mult.: From $\alpha(\exp)=0.36$ 9 (from intensity balance in 1999Ca08)
107.2	127	263.6+x	(9 ⁻)	156.4+x	(8 ⁻)	M1+E2		I_{γ} : $I_{\gamma}(107.2)$: $I_{\gamma}(169.7)=100:32(5)$ from Branching ratio 0.32 5. R(DCO)=0.69 6.
114.3		114.1+y	J+2	0.0+y	J			
118.9	55	156.4 + x 333.5 + y	(8 ⁻) I+4	37.5+x 211 5+y	(6 ⁻) I+3	$M1\pm F2$		$I \cdot I_{2}(122.0) \cdot I_{2}(219.3) - 100.66(13)$ from Branching
122.0	55	555.5+y	J ⊥ 4	211.J+y	J+J	W11+E2		ratio 0.66 13. R(DCO)=0.73 10.
122.4	516	307.2+x	(10 ⁻)	184.8+x	(9 ⁻)	M1+E2		R(DCO)=0.87 4.
124.3	124	657.4+x	(12 ⁻)	533.1+x	(11 ⁻)	M1		I_{γ} : $I_{\gamma}(124.3)$: $I_{\gamma}(300.4) = 100:290(40)$ from Branching ratio 2.9 4.
139.1		439.7+x	(9+)	300.6+x	(8+)	M1+E2		I_{γ} : $I_{\gamma}(139.1)$: $I_{\gamma}(231.9)$ =100:41(6) from Branching ratio 0.41 6.
141 3 <mark>&</mark>	13	141 3	Δ^+	0.0	3+			R(DCO)=0.78 0.
149.1	91	482.6+y	J+5	333.5+y	J+4	M1+E2	-0.10 7	I_{γ} : $I_{\gamma}(149.1)$: $I_{\gamma}(270.7)=100$:83(12) from Branching ratio 0.83 12.
158.8	96	1066.3+x	(14 ⁻)	907.5+x	(13 ⁻)	M1+E2	-0.17 10	R(DCO)=0.51 5. I _{γ} : I γ (158.8):I γ (408.8)=100:500(70) from Branching ratio 5.0 7.
160.9	761	468.1+x	(11 ⁻)	307.2+x	(10 ⁻)	M1+E2	0.31 3	R(DCO)=0.49 6. I_{γ} : $I_{\gamma}(160.9)$: $I_{\gamma}(282.7)=100$:14(3) from Branching ratio 0.14 3. R(DCO)=0.86 4
162.4 ^a	105	303.7	6+	141.3	4+	E2		R(DCO)=0.80 4. R(DCO)=1.17 13.
162.6	21	602.3+x	(10 ⁺)	439.7+x	(9+)	M1		 Iγ(162.6):Iγ(301.5)=100:82(7) from Branching ratio 0.82 7. R(DCO)=0.53 8.
167.6	40	211.5+y	J+3	44.1+y	J+1	EO		P(DCO) = 0.97.15
109./ 171.2 <mark>b</mark>	42	203.0+X	(9) 7+	93./+X	(/) 5+	E2 E2		K(DCO)=1.02.2
171.3	547 64	247.5 654.3+y	J+6	76.2 482.6+y	J+5	E2 M1		I_{γ} : $I_{\gamma}(171.7)$: $I_{\gamma}(320.3) = 100$:130(30) from

			165	⁵ Ho(¹⁶ O,5n	γ) 199	9Ca08,1995I	Kr01,1994H	Kr09 (continued)		
$\gamma(^{176}\text{Re})$ (continued)										
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	δ^{e}	Comments		
								Branching ratio 1.3 3.		
176.2	282	533.1+x	(11 ⁻)	356.9+x	(10 ⁻)	M1+E2		R(DCO)=0.48 5. I_{γ} : $I_{\gamma}(176.2)$: $I_{\gamma}(269.4)=100:71(5)$ from Branching ratio 0.71 5. P(DCO) = 0.28 6		
179.7	179	194.5+x	(8^+)	14.8+x	(7+)	M1+E2		R(DCO)=0.38 6. R(DCO)=0.75 7.		
181./		621.4+x	(10^{+})	439.7+x	(9 ⁺)	M1 . F2		D(DCO) 0.79 (
193.9		208.7+x	(/')	14.8+x	(/')	MI+E2		R(DCO)=0.78 6.		
197.2	627	665.3+x	(12 ⁻)	468.1+x	(11 ⁻)	M1+E2		 I_γ: I_γ(197.2):I_γ(358.0)=100:28(5) from Branching ratio 0.28 5. R(DCO)=0.76 3. 		
197.2	63	851.5+y	J+7	654.3+y	J+6	M1+E2		I _{γ} : I γ (197.2):I γ (368.7)=100:180(30) from Branching ratio 1.8 <i>3</i> .		
200.0	87	394.5+x	(9+)	194.5+x	(8+)	E2		R(DCO)=0.0 <i>I</i> . $I_{\gamma}: I_{\gamma}(200.0):I_{\gamma}(379.7)=100:41(4)$ from Branching ratio 0.41 <i>4</i> . R(DCO)=0.0		
200.2	20	256.0	(10^{-})	156 4	(0-)	E2		R(DCO) = 0.9 I.		
200.2 200.8	89 47	350.9+x 1577.3+x	(10^{-}) (16^{-})	1377.3+x	(8) (15 ⁻)	E2		R(DCO)=1.1 T. $I_{\gamma}: I_{\gamma}(200.8):I_{\gamma}(510.1)=100:760(100)$ from Branching ratio 7.6 <i>10</i> .		
201.3	110	803.6+x	(11 ⁺)	602.3+x	(10 ⁺)			I _γ : I _γ (201.3):I _γ (363.5)=100:50(7) from Branching ratio 0.50 7.		
201.3	/9	1892.6+x	(13, 15)	1691.3+x	(12, 14)					
207.9	53	602.3+x	(10^{+})	394.5+x	(9+)	M1+E2		R(DCO)=0.9 1.		
217.3	40	1068.8+y	J+8	851.5+y	J+7	M1+E2		I _γ : I _γ (217.3):I _γ (414.3)=100:290(60) from Branching ratio 2.9 <i>6</i> . R(DCO)=0.43 <i>6</i> .		
219.3	29	333.5+v	J+4	114.1+v	J+2	E2		R(DCO) = 1.0 I		
222.6	371	887.9+x	(13 ⁻)	665.3+x	(12 ⁻)	M1+E2		$I_{\gamma}: I_{\gamma}(222.6):I_{\gamma}(419.7)=100:56(8)$ from Branching ratio 0.56 8. R(DCO)=0.87.4		
224.2	37	1027.8+x	(12 ⁺)	803.6+x	(11 ⁺)	M1+E2		$I_{\gamma}: I_{\gamma}(224.2): I_{\gamma}(425.6) = 100: 130(20) \text{ from}$ Branching ratio 1.3 2. R(DCO) = 0.9 I		
226.9	43	621.4+x	(10 ⁺)	394.5+x	(9+)	M1+E2		I_{γ} : $I_{\gamma}(226.9)$: $I_{\gamma}(427.1)$ =100:85(7) from Branching ratio 0.85 7. R(DCO)=0.71 8.		
227.3 <mark>&</mark>	20	303.7	6+	76.2	5+	M1+E2	0.20 12	R(DCO)=0.73 10.		
231.5	53	852.9+x	(11 ⁺)	621.4+x	(10 ⁺)			I_{γ} : $I_{\gamma}(231.5)$: $I_{\gamma}(458.8) = 100$:110(10) from Branching ratio 1.1 <i>I</i> .		
231.9		439.7+x	(91)	208.7+x	$(/^{+})$					
234.9	85	2127.5+x	(14,16)	1892.6+x	(13,15)	(M1+E2)		 I_γ: I_γ(234.9):I_γ(437.1)=100:26(6) from Branching ratio 0.26 6. R(DCO)=0.9 2. 		
240.2	47	1309.0+y	J+9	1068.8+y	J+8	M1		$I_{\gamma}: I_{\gamma}(240.2):I_{\gamma}(457.2)=100:250(50)$ from Branching ratio 2.5 5. R(DCO)=0.49.7		
240.6	23	1268.4+x	(13 ⁺)	1027.8+x	(12 ⁺)	M1+E2		I_{γ} : $I_{\gamma}(240.6)$: $I_{\gamma}(465.7)$ =100:300(60) from Branching ratio 3.0 <i>6</i> . R(DCO)=0.9 <i>1</i> .		
244.7	19	2181.5+x	(18 ⁻)	1936.8+x	(17 ⁻)	M1+E2		I _y : I _Y (244.7):I _Y (603.7)=100:800(200) from Branching ratio 8.0 20. R(DCO)=0.7 2.		
247.9	23	1100.8+x	(12+)	852.9+x	(11+)	M1+E2		I_{γ} : $I_{\gamma}(247.9)$: $I_{\gamma}(479.9)$ =100:100(10) from Branching ratio 1.0 <i>I</i> . R(DCO)=0.8 <i>2</i> .		

$\gamma(^{176}\text{Re})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [#]	Comments
250.1	168	907.5+x	(13 ⁻)	657.4+x	(12 ⁻)	M1+E2	I _γ : Iγ(250.1):Iγ(374.2)=100:130(20) from Branching ratio 1.3 2.
							R(DCO)=0.44 6.
250.9 ^c		852.9+x	(11^{+})	602.3+x	(10^{+})		
252.6	354	1140.5+x	(14 ⁻)	887.9+x	(13 ⁻)	M1+E2	I_{γ} : $I_{\gamma}(252.6):I_{\gamma}(475.2)=100:64(9)$ from Branching ratio 0.64 9.
257.3	19	1566.3+y	J+10	1309.0+y	J+9	M1	R(DCO)=0.76 4. I_{γ} : $I_{\gamma}(257.3)$: $I_{\gamma}(497.3)$ =100:430(110) from Branching ratio 4.3 11.
250 2 <mark>0</mark>	177	562.0	o+	202 7	6+	E2	R(DCO)=0.07.17
250.5	10	$1360.2 \pm x$	(13^+)	$1100.8 \pm x$	(12^+)	$M1\pm F2$	K(DCO) = 0.97 T7. I · $I_{V}(259 A) \cdot I_{V}(507 7) = 100 \cdot 160(20)$ from Branching ratio
237.4	17	1500.21X	(15)	1100.01X	(12)	1411 1.2	1.6 2. R(DCO)=0.9 1.
262.7	16	1531.1+x	(14 ⁺)	1268.4+x	(13 ⁺)	M1+E2	I _γ : I _γ (262.7):I _γ (504.1)=100:270(50) from Branching ratio 2.7 5.
							R(DCO)=0.82 6.
263.1	67	2390.6+x	(15,17)	2127.5+x	(14,16)		I _γ : Iγ(263.1):Iγ(498.3)=100:41(10) from Branching ratio 0.41 <i>10</i> .
267.8 <mark>0</mark>	500	515.3	9+	247.5	7+	E2	R(DCO)=0.97 5.
269.4	210	533.1+x	(11^{-})	263.6+x	(9 ⁻)	E2	R(DCO)=0.92 7.
269.8	21	1630.0+x	(14^{+})	1360.2+x	(13 ⁺)		I _γ : Iγ(269.8):Iγ(529.6)=100:150(20) from Branching ratio 1.5 2.
270.6	8	1801.7+x	(15 ⁺)	1531.1+x	(14 ⁺)	M1+E2	I_{γ} : $I_{\gamma}(270.6)$: $I_{\gamma}(533.2)$ =100:790(230) from Branching ratio 7.9 23.
270.7	76	$482.6 \pm v$	I+5	211 5±v	I+3	F2	R(DCO) = 1.2.2
274.3	263	1414.8+x	(15 ⁻)	1140.5 + x	(14 ⁻)	M1+E2	I_{γ} : $I_{\gamma}(274.3)$: $I_{\gamma}(526.7)$ =100:93(13) from Branching ratio 0.93 13.
							R(DCO)=0.81 5.
275.0	20	1841.3+y	J+11	1566.3+y	J+10	M1	I_{γ} : $I_{\gamma}(275.0)$: $I_{\gamma}(532.4)$ =100:610(150) from Branching ratio 6.1 <i>15</i> .
277.2	15	1007.2 + **	(15^{+})	1620.0+*	(14^{\pm})		K(DCO)=0.5 I.
277.5	15	1907.5+X	(15^{-})	1030.0+X	(14^{-})		1_{γ} : $1_{\gamma}(277.5)$: $1_{\gamma}(347.5)$ =100:190(30) from Branching ratio 1.9 3.
286.0	99 5	$408.1 \pm x$	(11) (16^+)	104.0+X 1801 7 + x	(9) (15^+)		$I + I_{2}(286.0) \cdot I_{2}(556.2) - 100.000(100)$ from Branching ratio
200.0	29	2007.7+x	(10)	2200 () =	(15)		9 3.
287.8	28	2078.4+X	(10,18)	2390.0+X	(15,17)		1_{γ} : $1_{\gamma}(287.8)$: $1_{\gamma}(351.8)$ =100:80(20) from Branching ratio 0.8 2.
291.0	21J	2132.3+у	J+12	1841.3+y	J+11		I _γ : Iγ(291.0):Iγ(566.0)=100:480(110) from Branching ratio 4.8 11.
291.0 ^{<i>f</i>}	4 <i>1</i>	2378.7+x	(17 ⁺)	2087.7+x	(16+)		I _γ : I _γ (291.0):I _γ (577.3)=100:600(300) from Branching ratio 6 <i>3</i> .
291.0 ^{<i>f</i>}	10 f	2423.3+y	J+13	2132.3+y	J+12		I_{γ} : Iγ(291.0):Iγ(582.2)=100:660(130) from Branching ratio 6.6 13.
294.2	192	1709.0+x	(16 ⁻)	1414.8+x	(15 ⁻)	M1+E2	I _γ : I _γ (294.2):I _γ (568.0)=100:120(20) from Branching ratio 1.2 2.
296.9	16	2869.7+x	(20 ⁻)	2572.8+x	(19 ⁻)		I_{γ} : $I_{\gamma}(296.9)$: $I_{\gamma}(687.3)$ =100:1000(200) from Branching
300.4	336	657.4+x	(12^{-})	356.9+x	(10^{-})	E2	R(DCO)=1.04~6.
301.5	22	602.3 + x	(10^+)	300.6+x	(8+)	E2	R(DCO)=0.9 I.
309.3	18	2987.7+x	(17,19)	2678.4+x	(16,18)		I_{γ} : Iγ(309.3):Iγ(597.2)=100:200 from Branching ratio 2.0 6.

$\gamma(^{176}\text{Re})$ (continued)

E_{γ}^{\dagger}	Ι _γ ‡	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^{π}	Mult. [#]	Comments
311.0	81	1377.3+x	(15 ⁻)	1066.3+x	(14 ⁻)	M1+E2	I _γ : Iγ(311.0):Iγ(469.8)=100:190(30) from Branching ratio 1.9.3.
313.4	161	2022.4+x	(17-)	1709.0+x	(16 ⁻)	M1+E2	R(DCO)=0.41 5. I_{γ} : $I_{\gamma}(313.4)$: $I_{\gamma}(607.5)$ =100:190(30) from Branching ratio 1.9 3. R(DCO)=0.64 5.
314.3 <mark>&</mark>	11	562.0	8+	247.5	7+		
320.3 325.5	110 95	654.3+y 2347.9+x	J+6 (18 ⁻)	333.5+y 2022.4+x	J+4 (17 ⁻)	E2 M1+E2	R(DCO)=0.97 5. I _y : I _y (325.5):I _y (638.7)=100:300(50) from Branching ratio 3.0 5. R(DCO)=0.71 6
327.8	26	3315.5+x	(18,20)	2987.7+x	(17,19)		I_{γ} : $I_{\gamma}(327.8)$: $I_{\gamma}(636.7)$ =100:80(20) from Branching ratio 0.8
339.8	17	3655.3+x	(19,21)	3315.5+x	(18,20)		I_{γ} : $I_{\gamma}(339.8)$: $I_{\gamma}(667.4)$ =100:120(30) from Branching ratio 1.2.3.
342.8	71	2690.7+x	(19 ⁻)	2347.9+x	(18 ⁻)	M1+E2	I_{γ} : $I_{\gamma}(342.8)$: $I_{\gamma}(668.3)$ =100:320(50) from Branching ratio 3.2 5.
346.8	77	3037.5+x	(20 ⁻)	2690.7+x	(19 ⁻)	M1	R(DCO)=0.72 0. I_{γ} : $I_{\gamma}(346.8):I_{\gamma}(689.7)=100:260(40)$ from Branching ratio 2.6 4. R(DCO)=0.49 8
349.3 <mark>a</mark>	146	911.3	10+	562.0	8+	E2	R(DCO)=0.98 13.
350.3	39	3629.2+x	(22 ⁻)	3277.5+x	(21 ⁻)		
358.0	221	665.3+x	(12^{-})	307.2+x	(10^{-})	E2	R(DCO)=0.99 7.
359.3 ⁰	469	874.6	11^{+}	515.3	9+	E2	R(DCO)=0.96 4.
359.5	57	1936.8+x	(17 ⁻)	1577.3+x	(16 ⁻)	M1+E2	I _γ : I _γ (359.5):I _γ (558.4)=100:230(30) from Branching ratio 2.3 <i>3</i> . R(DCO)=0.40 <i>6</i> .
363.5	41	803.6+x	(11^{+})	439.7+x	(9 ⁺)	E2	$R(DCO)=0.9 \ I.$
363.5	29	3401.0+x	(21 ⁻)	3037.5+x	(20 ⁻)	M1+E2	I_{γ} : $I_{\gamma}(363.5)$: $I_{\gamma}(710.2)=100:500(200)$ from Branching ratio 5.2.
364.0	19	3765.0+x	(22 ⁻)	3401.0+x	(21 ⁻)		I_{γ} : $I_{\gamma}(364.0)$: $I_{\gamma}(727.5)$ =100:800(300) from Branching ratio
368.7	136	851.5+v	J+7	482.6+v	J+5	E2	R(DCO)=1.03 7.
370.3	8	4025.6+x	(20,22)	3655.3+x	(19,21)		I_{γ} : $I_{\gamma}(370.3)$: $I_{\gamma}(710.4)$ =100:110(30) from Branching ratio 1.1 3.
374.2	255	907.5+x	(13 ⁻)	533.1+x	(11 ⁻)	E2	R(DCO)=1.0 4.
379.7	35	394.5+x	(9 ⁺)	14.8+x	(7^{+})	E2	R(DCO)=1.1 <i>1</i> .
381.0	19	4146.0+x	(23 ⁻)	3765.0+x	(22 ⁻)		I _γ : I _γ (381.0):I _γ (745.8)=100:370(80) from Branching ratio 3.7 8.
387.5	16	4533.5+x	(24 ⁻)	4146.0+x	(23 ⁻)		<i>I</i> _γ : <i>I</i> _γ (387.5): <i>I</i> _γ (768.0)=100:290(90) from Branching ratio 2.9 9.
391.3	39	2572.8+x	(19 ⁻)	2181.5+x	(18 ⁻)		I _γ : I _γ (391.3):I _γ (635.3)=100:280(40) from Branching ratio 2.8 4.
396.0 <mark>&</mark>	7	911.3	10^{+}	515.3	9+		
407.6	32	602.3+x	(10^{+})	194.5+x	(8 ⁺)	E2	R(DCO)=1.1 <i>1</i> .
407.8	200	3277.5+x	(21^{-})	2869.7+x	(20^{-})	52	
408.8	390	1066.3+x	(14^{-})	657.4+x	(12^{-})	E2	R(DCO)=1.06 /.
409.1	15	803.0+X	(11')	594.5+X	(9°) Tré	E2	P(DCO) = 1.1 I
414.5	137	1008.8+y	$J+\delta$ (12 ⁻)	034.3+y	J+0 (11-)	E2 E2	K(DCO)=1.1 I. P(DCO)=0.03.8
419.7	237 70	007.9+X	(13) (12^+)	400.1+X	(11) (10^+)	E2 E2	R(DCO) = 0.75 0. R(DCO) = 0.075
423.0	49 36	$621 4 \pm v$	(12) (10^+)	10/2.3+X	(10) (8^+)	E2 F2	$R(DCO) = 0.87 \ J.$
431.0^{a}	126	1342.3	12^+	911.3	10+	E2	R(DCO)=0.00 <i>J</i> .

$\gamma(^{176}\text{Re})$ (continued)

E_{γ}^{\dagger}	I _γ ‡	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	Comments
437.1 437.4	22 101	2127.5+x 1691.3+x	(14,16) (12,14)	1691.3+x (12,14 1253.9+x (10,12)	
441.3 ^b	442	1315.9	13+	874.6 11 ⁺	E2	R(DCO)=0.93 5.
457.2	118	1309.0+v	J+9	851.5+v J+7	E2	R(DCO)=1.0 I.
458.8	54	852.9+x	(11^{+})	$394.5 + x (9^+)$	E2	R(DCO)=0.9 /.
465.7	58	1268.4 + x	(13^+)	803.6+x (11 ⁺)	E2	R(DCO) = 1.07.6
467.6 ^{&}	6	1342.3	12+	874.6 11 ⁺		
469.8	176	1377.3+x	(15^{-})	$907.5 \pm x$ (13 ⁻)	E2	R(DCO)=0.96.5
475.2	235	1140.5 + x	(14^{-})	$665.3 + x (12^{-})$	E2	R(DCO)=0.97.5.
479.9	23	1100.8 + x	(12^+)	$621.4 + x (10^+)$	E2	R(DCO) = 1.1.2
497 3	138	1566.3 + v	I + 10	1068 8+v I+8	E2	R(DCO) = 1.0 /
498.3	27	2390.6+x	(15.17)	1892.6 + x (13.15)	
500.5 ^a	119	1842.8	14+	1342.3 12+	, F2	B(DCO) = 1.2.2
504.1	41	1531.1 + x	(14^+)	$1027.8 + x (12^+)$	E2	R(DCO) = 1.07.7
507.7	34	1360.2 + x	(13^+)	852.9+x (11 ⁺)	E2 F2	R(DCO) = 0.9.2
500.0h	414	1905.7	15+	1215.0 12+	E2	R(DCO) = 0.092
510.1	414	1623.7	(1(-))	$1313.9 15^{\circ}$ $1066.2 (14^{-})$	E2 E2	R(DCO) = 0.98 3.
510.1	422	13//.3+X	(10)	$1000.3 \pm x$ (14)	E2 E2	R(DCO) = 1.02 0.
520.7	204	1414.0+X	(13)	$007.9 \pm x$ (15)	E2 E2	R(DCO) = 1.1 I.
529.0	29	1030.0+X	(14^{+})	$1100.8 + X (12^{-})$	E2	R(DCO) = 1.1 I.
532.4	52	1841.3+y	J+11 (15+)	1309.0+y J+9 1268.4+m (12 ⁺)	E2 E2	R(DCO) = 1.1 I.
535.2 532.00	52	1801.7 + X	(15^{+})	$1208.4 + X (13^{\circ})$	E2	R(DCO) = 0.99 0.
535.2	52	23/6.0	10^{+}	1842.8 14^{+}	E2	R(DCO) = 0.99 0.
547.5	29	1907.3+X	(15°)	$1360.2 + X (13^{\circ})$	E2	R(DCO)=0.9 T.
552.00	23	26/8.4+X	(10, 18)	2127.5+X (14,16)	P(DCO) 110
553.0 ⁴	118	23/8.7	1/'	1825./ 15'	E2	R(DCO) = 1.1.2.
550.2	4/	2087.7+X	(10^{+})	$1531.1 + X (14^{+})$	E2	$R(DCO) = 1.06 \ 0.$
550.4	154	1936.8+X	(1/)	13//.3+X (15) 1620.0+x (14 ⁺)	E2	R(DCO)=0.96 5.
500.8	29	2190.8+x	(10)	1030.0+x (14)		
565.8 ⁰	217	2944.5	19+	2378.7 17+	E2	R(DCO)=1.11 7.
566.0	103	2132.3+y	J+12	1566.3+y J+10	E2	R(DCO)=0.97 7.
568.0	250	1709.0+x	(16 ⁻)	$1140.5 + x (14^{-})$	E2	R(DCO)=0.98 4.
571.6 ⁸	11	2762.4+x	(18^+)	$2190.8 + x (16^+)$		
577.3	26	2378.7+x	(17^{+})	$1801.7 + x (15^+)$	E2	R(DCO)=1.2 2.
582.2	65	2423.3+y	J+13	1841.3+y J+11	E2	R(DCO)=0.9 1.
597.2	35	2987.7+x	(17,19)	2390.6+x (15,17)	
599.2	23	2686.9+x	(18^{+})	2087.7+x (16 ⁺)		
600.8 ⁰	186	3545.3	21^{+}	2944.5 19+	E2	R(DCO)=0.9 1.
603.7	193	2181.5+x	(18 ⁻)	$1577.3 + x (16^{-})$	E2	R(DCO)=1.0 I.
604.0 <mark>8</mark>		2511.3+x	(17^{+})	$1907.3 + x (15^+)$		
607.5	284	2022.4+x	(17^{-})	$1414.8 + x (15^{-})$	E2	R(DCO)=1.03 6.
617.5		2996.2+x	(19^{+})	$2378.7 + x (17^+)$		
631.2		3318.1+x	(20^{+})	$2686.9 + x (18^+)$		
635.3	116	2572.8+x	(19 ⁻)	$1936.8 + x (17^{-})$	E2	R(DCO)=1.01 6.
636.7	22	3315.5+x	(18,20)	2678.4+x (16,18)	
638.7	262	2347.9+x	(18 ⁻)	$1709.0+x (16^{-})$	E2	R(DCO)=1.02 5.
658.1		3654.3+x	(21^{+})	2996.2+x (19 ⁺)		
661.6 ⁰	94	4206.9	23+	3545.3 21 ⁺	E2	R(DCO)=1.1 1.
667.4	20	3655.3+x	(19,21)	2987.7+x (17,19)	
668.3	227	2690.7+x	(19 ⁻)	2022.4+x (17 ⁻)	E2	R(DCO)=0.93 8.
687.3	146	2869.7+x	(20^{-})	2181.5+x (18 ⁻)	E2	R(DCO)=1.04 6.
689.7	181	3037.5+x	(20^{-})	2347.9+x (18 ⁻)	E2	R(DCO)=1.06 5.
703.7	51	3277.5+x	(21 ⁻)	2572.8+x (19 ⁻)	E2	R(DCO)=1.01 6.
710.2	167	3401.0+x	(21^{-})	2690.7+x (19 ⁻)	E2	R(DCO)=0.94 8.
710.4	9	4025.6+x	(20, 22)	3315.5+x (18,20)	

$\gamma(^{176}\text{Re})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	Comments
725.2 ^b	62	4932.1	25+	4206.9 23+	E2	R(DCO) = 1.0 I.
727.5	139	3765.0+x	(22^{-})	3037.5+x (20	-) E2	R(DCO)=1.1 I.
745.8	81	4146.0+x	(23^{-})	3401.0+x (21	-)́	
760.9	109	3629.2+x	(22-)	2869.7+x (20	-) E2	R(DCO)=0.97 7.
763.3		4040.8+x	(23 ⁻)	3277.5+x (21	⁻) E2	R(DCO)=0.95 8.
768.0	53	4533.5+x	(24 ⁻)	3765.0+x (22	-)	
783.7 <mark>b</mark>	22	5715.8	27^{+}	4932.1 25+		
786.2	125	1253.9+x	(10, 12)	468.1+x (11	⁻) (M1+E2)	R(DCO)=0.48 8.
787.8	71	5321.3+x	(25 ⁻)	4533.5+x (24	-)	
803.8	81	1691.3+x	(12, 14)	887.9+x (13	⁻) (M1+E2)	R(DCO)=0.5 1.
806.4	28	6127.7+x	(26 ⁻)	5321.3+x (25	_)	
820.5		4861.3+x	(25^{-})	4040.8+x (23	-)	
823.0		4452.2+x	(24^{-})	3629.2+x (22	_)	
832.0 <mark>8</mark>	34	6959.7+x	(27^{-})	6127.7+x (26	_)	
840.1 <mark>b</mark>	12	6555.9	29^{+}	5715.8 27+		
863.0 <mark>8</mark>	15	7822.7+x	(28^{-})	6959.7+x (27	_)	
868.0		5729.3+x	(27^{-})	4861.3+x (25	-)	
870.4		5322.6+x	(26 ⁻)	4452.2+x (24	-)	
899.0		6221.6+x	(28^{-})	5322.6+x (26	-)	
946.7	116	1253.9+x	(10, 12)	307.2+x (10	⁻) (E2)	R(DCO)=1.1 <i>1</i> .
1026.4		1691.3+x	(12, 14)	665.3+x (12	⁻) (E2)	R(DCO)=1.0 l.

[†] From 1999Ca08.

[±] From 1999Ca08. Uncertainties between 0.1 and 0.3 keV.

[#] Assigned by evaluator based on DCO ratios, except otherwise noted.

[@] M1(E2) in 1999Ca08 are presented as M1+E2 by the evaluator.

& Transition from the unfavored, (α =0), into the favored, (α =1), sequence in band D, configuration: $\pi(1/2[541]) \otimes \nu 1/2[521]$.

^{*a*} Transitions in unfavored, (α =0), sequence in band D, configuration: $\pi(1/2[541]) \otimes \nu 1/2[521]$.

^b Transitions in favored, (α =1), sequence in band D, configuration: $\pi(1/2[541]) \otimes \nu 1/2[521]$.

^c Shown in the decay scheme, but not in the table (1999Ca08).

^d Transition depopulating band A.

^e From 1999Ca08.

^g Placement of transition in the level scheme is uncertain.

^f Multiply placed with intensity suitably divided.

¹⁷⁶₇₅Re₁₀₁

 $^{176}_{75} \mathrm{Re}_{101}$

Level Scheme (continued)

Intensities: Relative I_{γ} @ Multiply placed: intensity suitably divided

¹⁷⁶₇₅Re₁₀₁