¹⁶⁴Er(¹⁶O,4nγ) **1982Dr03**

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	M. S. Basunia	NDS 107, 791 (2006)	15-Sep-2005				

176Os Levels

74% enriched ¹⁶⁴Er, E=93.5 MeV. Measured E γ , I γ , $\gamma\gamma$ coin, $\gamma\gamma(t)$, $\gamma(\theta)$ at six angles between $\theta=0^{\circ}$ and 90° . Detectors:Ge(Li), Compton-suppressedGe(Li).

+	+	+	+	+	+	+	+
E(level)	J^{n} +	E(level)	J ^{<i>n</i>} +	E(level)	J ^{<i>n</i>} +	E(level)	J ^{<i>n</i>} +
0.0 [#]	0^{+}	2076.0 [@] 19	(9 ⁻)	3381.5 [#] 24	16+	4699 <mark>a</mark> 3	(19)
135.1 ^{#} 10	2+	2167.9 [#] 20	12^{+}	3456.9 [@] 24	(15 ⁻)	5043? ^{&} 1	(20^{-})
395.4 [#] 15	4+	2265.3 ^a 20	(9)	3547 ^a 3	(15)	5287 [@] 3	(21 ⁻)
742.4 [#] 17	6+	2395.0 <mark>&</mark> 21	(10 ⁻)	3566.9 24	(16 ⁺)	5349 ^a 4	(21)
1157.6 [#] 18	8+	2474.0 [@] 20	(11^{-})	3829 ^{&} 3	(16 ⁻)	5399 [#] 3	(22^{+})
1475.0 ^{&} 17	(4 ⁻)	2571.1 22	(12^{+})	4019 [#] 3	18^{+}	5976 [@] 4	(23 ⁻)
1516.5 [@] 19	(5 ⁻)	2621.7 ^a 23	(11)	4024 [@] 3	(17 ⁻)	6057 ^a 4	(23)
1634.0 [#] 19	10^{+}	2754.7 [#] 23	14^{+}	4100 ^{<i>a</i>} 3	(17)	6147 [#] 4	(24 ⁺)
1708.0 ^{&} 18	(6 ⁻)	2817.9 ^{&} 23	(12 ⁻)	4176.7 25	(18^{+})	6683 [@] 4	(25 ⁻)
1753.7 [@] 18	(7-)	2937.8 [@] 22	(13-)	4420 ^{&} 3	(18 ⁻)		
1978.8 ^a 20	(7)	3050.8 ^a 25	(13)	4635 [@] 3	(19 ⁻)		
2020.9 ^{&} 19	(8 ⁻)	3295 ^{&} 3	(14 ⁻)	4683 [#] 3	(20^{+})		

[†] Deduced by evaluator from a least squares fit to the γ -ray energies assuming $\Delta E=1$ keV for all γ -ray energies.

[‡] Assignments are based on rotational band structure, γ -ray angular distributions, and level deexcitation patterns. The g.s. rotational band was interpreted in terms of rotation- alignment of single-particle states with Coriolis mixing included. Arguments for the assignment of two odd-parity bands include the strong similarity with bands observed in ¹⁷⁸Os. These bands may be related to each other, and for the low-spin members, to the single-phonon octupole vibration (1982Dr03).

[#] $K^{\pi}=0^+$ g.s. rotational band.

[@] Rotational band 1.

& Rotational band 2.

^a Rotational band 3.

$\gamma(^{176}\mathrm{Os})$

Eγ	Iγ	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [†]	Comments
135.1	52.4 10	135.1	2+	0.0 0+	E2	$A_2 = +0.19 2, A_4 = -0.09 3.$
225.0 [#]	≤0.9 [‡]	1978.8	(7)	1753.7 (7 ⁻)		
233.0	1.4 [‡] 3	1708.0	(6 ⁻)	1475.0 (4-)		
237.1	2.9 [‡] 6	1753.7	(7-)	1516.5 (5-)		
260.3	100	395.4	4+	135.1 2+	E2	$A_2 = +0.229 7, A_4 = -0.07 1.$
286.4	2.9 2	2265.3	(9)	1978.8 (7)	E2	$A_2 = +0.27 4$, $A_4 = -0.14 5$.
306	1.0 [‡] 2	2474.0	(11^{-})	2167.9 12+		
313.2	7.6 2	2020.9	(8 ⁻)	1708.0 (6 ⁻)	E2	$A_2 = +0.228\ 25,\ A_4 = -0.08\ 3.$
322.4	11.0 3	2076.0	(9-)	1753.7 (7-)	E2	$A_2 = +0.280 \ 14, A_4 = -0.122 \ 16.$
347.0	103.5 12	742.4	6+	395.4 4+	E2	$A_2 = +0.258 \ 13, \ A_4 = -0.096 \ 18.$
356.4	6.8 4	2621.7	(11)	2265.3 (9)	E2	$A_2 = +0.165, A_4 = -0.096.$
374.0	10.3 4	2395.0	(10^{-})	2020.9 (8 ⁻)	(E2)	$A_2 = +0.19 2$, $A_4 = -0.05 3$.
398.3	15.7 6	2474.0	(11^{-})	2076.0 (9 ⁻)	E2	$A_2 = +0.293 \ 19, \ A_4 = -0.114 \ 24.$
415.0	87.0 15	1157.6	8+	742.4 6+	E2	$A_2 = +0.281 \ I3, A_4 = -0.108 \ I5.$

Continued on next page (footnotes at end of table)

¹⁶⁴Er(¹⁶O,4nγ) **1982Dr03** (continued)

$\gamma(^{176}\text{Os})$ (continued)

Eγ	Iγ	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [†]	Comments
422.9 429.1	6.3 <i>6</i> 7.7 <i>4</i>	2817.9 3050.8	(12^{-}) (13)	$\begin{array}{c c} \hline 2395.0 & \hline (10^{-}) \\ 2621.7 & (11) \\ \end{array}$	E2 E2	$A_2 = +0.32$ 7, $A_4 = -0.13$ 8. $A_2 = +0.38$ 9, $A_4 = -0.17$ 10.
442.2	3.4 [‡] 5	2076.0	(9-)	1634.0 10+		$A_2 = (-0.06 \ 3).$
463.8	14.5 6	2937.8	(13 ⁻)	2474.0 (11 ⁻)	E2	$A_2 = +0.30 2$, $A_4 = -0.13 3$.
476.3	63.3 15	1634.0	10^{+}	1157.6 8+	E2	$A_2 = +0.29 2, A_4 = -0.11 3.$
						A_2 and A_4 values are doublet.
476.9	3.2 [‡] 4	3295	(14 ⁻)	2817.9 (12 ⁻)		$A_2 = +0.29 2, A_4 = -0.11 3.$
106.6	0.0.5	05.45	(1.5)	2050 0 (12)	5.0	A_2 and A_4 values are doublet.
496.6	8.2.5	3547	(15)	3050.8 (13)	E2 E2	$A_2 = +0.28 3, A_4 = -0.12 4.$
533.8	12.0 3	3430.9 2167.0	(15) 12^+	2937.8(13) $1634.0(10^{+})$	E2 E2	$A_2 = +0.202, A_4 = -0.102.$
555.0	+0.5 10	2107.9	12	1054.0 10	112	$A_2 = \pm 0.275$ 14, $A_4 = -0.115$ 16.
5347	3 1 5	3820	(16^{-})	$3205 (14^{-})$		$\Lambda_2 = \pm 0.275 \ 14 \ \Lambda_2 = -0.113 \ 18$
554.7	5.415	5629	(10)	5295 (14)		$A_2 = +0.275$ 14, $A_4 = -0.115$ 10. A ₂ and A_4 values are doublet.
552.6	76 49	4100	(17)	3547 (15)	(E2)	$A_2 = (+0.26.3)$ $A_4 = (-0.11.4)$
566.9	11.3 4	4024	(17^{-})	$3456.9 (15^{-})$	E2	$A_2 = +0.27$ 3. $A_4 = -0.12$ 4.
586.8	29.1 9	2754.7	14+	2167.9 12+	E2	$A_2 = +0.20 3, A_4 = -0.11 4.$
590.9	2.9 3	4420	(18 ⁻)	3829 (16 ⁻)	(E2)	$A_2 = +0.35 \ 12, \ A_4 = -0.08 \ 16.$
596.2	15.1 <i>13</i>	1753.7	(7 ⁻)	1157.6 8+	D	$A_2 = -0.10 2, A_4 = -0.01 3.$
599.0	6 [‡] 1	4699	(19)	4100 (17)		
609.8	≈2 [‡]	4176.7	(18^{+})	3566.9 (16 ⁺)		
610.9	8.9 5	4635	(19-)	4024 (17 ⁻)	E2	$A_2 = +0.32 6, A_4 = -0.17 8.$
623 [#]	≤1.8	5043?	(20^{-})	4420 (18 ⁻)		
626.8	21.0 7	3381.5	16+	2754.7 14+	E2	$A_2 = +0.29 2, A_4 = -0.10 3.$
631.3	2.9 4	2265.3	(9) 10 [±]	$1634.0 \ 10^+$	(D)	$A_2 = -0.12 8.$
037.7 640.0	12.04	4019 5340	(21)	3381.3 10 ⁻ 4600 (10)	E_2 (E2)	$A_2 = +0.30\ 2, A_4 = -0.08\ 3.$
652.1	465	5287	(21) (21^{-})	$4635 (19^{-})$	(E2)	$A_2 = +0.207, A_4 = -0.0000.$ $A_2 = +0.246 A_4 = -0.047$
664.1	6.8 2	4683	(20^+)	4019 18+	(E2)	$A_2 = +0.26 \ 3, \ A_4 = -0.04 \ 4.$
688.8	3.6 [‡] 5	5976	(23^{-})	5287 (21 ⁻)		
707.0	2.0 [‡] 4	6683	(25 ⁻)	5976 (23-)		
708.3	2.6 [‡] 8	6057	(23)	5349 (21)		
715.6	2.9 4	5399	(22 ⁺)	4683 (20 ⁺)	(E2)	$A_2 = +0.20 8, A_4 = -0.04 9.$
748.5	2.3 3	6147	(24^{+})	5399 (22 ⁺)	(E2)	$A_2 = (+0.14 \ 9).$
768.9 [#]	≤2.0	2937.8	(13 ⁻)	2167.9 12+		
774.0	4.7 2	1516.5	(5^{-})	742.4 6+	D	$A_2 = -0.25 5, A_4 = +0.00 6.$
/95.3	2.93	41/0./	(18^+)	$3381.5 16^{+}$	(E2) (E2)	$A_2 = +0.27 8, A_4 = -0.08 9.$
821.1	2.8.3	1978.8	(10)	2734.7 14 1157.6 8 ⁺	(E2)	$A_2 = +0.247, A_4 = -0.119.$ $A_2 = -0.1872$
839.7	$1.1^{\ddagger} 2$	2474.0	(11^{-})	$1634.0 \ 10^+$		
863.1	≈2.5 [‡]	2020.9	(8 ⁻)	1157.6 8+		
918.4	3.3 3	2076.0	(9-)	1157.6 8+	(D)	$A_2 = -0.18 \ 6.$
937.1	3.7 2	2571.1	(12^{+})	1634.0 10+	(E2)	$A_2 = +0.16 6, A_4 = -0.08 7.$
965.7	6.3 <i>3</i>	1708.0	(6 ⁻)	742.4 6+	(D)	$A_2 = +0.35 \ 3, A_4 = +0.00 \ 4.$
10114	132	1753 7	(7^{-})	742 4 6+	D	with: $A_2=0.55$ 3, $A_4=0.00$ 4 suggest ΔJ=0. $A_2=-0.28$ 15
1079.6	1.32.15	1475.0	(4^{-})	395.4 4+	D	$A_2 = +0.33 11.$
	1.52 15	1.70.0	(.)			$A_2=0.33$ 11 is consistent with E1 or stretched E2. A_4 was
						not.
1120.6 [#]	1.6 2	1516.5	(5 ⁻)	395.4 4+		

164 Er(16 O,4n γ) 1982Dr03 (continued)

 $\gamma(^{176}\text{Os})$ (continued)

[†] From γ(θ).
[‡] From γγ coin.
[#] Placement of transition in the level scheme is uncertain.

¹⁷⁶₇₆Os₁₀₀

 $^{176}_{76}\mathrm{Os}_{100}$