		_				History		Literature Criteff Date		
		Typ	be	A	uthor	Citation	n	Literature Cutoff Date		
		Full Eva	luation	M. S	. Basunia	NDS 107,791	(2006)) 15-Sep-2005		
$Q(\beta^{-})=1194.2$ Note: Current	9; S(n) evaluati	=6287.98 <i>15</i> ; S(p ion has used the f)=5976.0 ollowing	6 <i>13</i> ; Q ; Q reco	Q(α)=1566 ord \$ 1190	6 2012Wa38 .2 8 6287.98 1	55975.'	7 <i>13</i> 1568 6 2003Au03.		
						¹⁷⁶ Lu Levels				
					Cross Re	eference (XREF	F) Flags	-		
			A B C D E	¹⁷⁵ Lu(¹⁷⁵ Lu(¹⁷⁵ Lu(¹⁷⁶ Yb(Coulor	n, γ) E=the n, γ) E=2,2 n, γ) E=res (p,n γ) mb excitation	rmal 4 keV res: av on	F G H I			
E(level) [†]	J ^π ‡	$T_{1/2}^{\#}$	XRE	EF				Comments		
0.0&	7-	3.76×10 ¹⁰ y 7	A DE	GHI	$%β^-=100$ μ=+3.169 $J^π$: J=7, a No ε (<0. <10% (μ: atomic 3 (1962 Q: atomic pionic 2 Isotope sh 1979Nu T _{1/2} : Wei (1965B 4.08×10 the Lim The una precise measura with go multiple (α(M)-1 uncerta T _{1/2} =~ systema weak n thorium (1990G 4.56×10 3.5 (1955) (1964D)	2 45; Q=+4.92 ttomic beam (19 36% (2004Not) (1954Ar03). beam (direct) (2 25p03). beam (1985Br x-rays (1983Ol) iff: $\Delta < r^2 > (1^{75})$ (01, 1994Ji02). ghted average (175) (01, 1994Ji02). ghted average (175) (01, 1994Ji02). ghted average (175) (01, 1994Ji02). ghted average (175) (01, 1994Ji02). ghted average (175) (010) y 24 (1980) 83Sa44), 4.05× a03), 3.69×10 ¹⁰ red 1 sigma un 0 ¹⁰ y 3 (2003G <i>itiation of Relat</i> certainty in the value of 3.69× ed by γ -ray con od energy reso e-collector indu ICP-ms) for Lu inty is reported 3.57×10 ¹⁰ y. 7 atic errors becau atural Lu ₂ O ₃ ss o or determined e05):7.3×10 ¹⁰ 0 ¹⁰ y 30 (1954) (8He42), 3.6×1 001) 3.27×10 ¹¹	3 962Sp0 99)). Or (1985B 09). Or 03), +4 1000, +4 1000, +4 1000, 1000 , 10000 , 1000 , 10000 , 10000 , 1000 , 1000 , 10000 , 10000 , 10000 , 100	3); π=-, L=4 in (t,α). ther value: <0.9% (2005Am04) and r09). Others: 3.162 <i>12</i> (1998Ge13), 3.1 ther value: +5.07 7 hyperfine structure of 4.92 5 laser spectroscopy (1998Ge13). Lu)=0.022 fm ² 5 (1980Zi03), d χ^2 =16.2) of 3.68×10 ¹⁰ y 6 267Sa05), 3.79×10 ¹⁰ y 3 (1972Ko50), 3.59×10 ¹⁰ y 5 (1982Sg01), 3.78×10 ¹⁰ 9 (1990Ge05), 3.73×10 ¹⁰ y 5 1998Ni07), 3.72×10 ¹⁰ y 2 (2001Sc58 – ty), 3.50×10 ¹⁰ y 6 (2003Bi06), nd 3.677×10 ¹⁰ y 75 (2003Ni11), using <i>istical Weights</i> method (1988WoZO). e value was expanded to include the most 2 (1998Ni07). The input values were γ - γ coincidence, γ -sum coincidence for isotope identification, coupled plasma mass spectrometry io in 2001Sc58 and 2003Bi06. No 5Am04 for T _{1/2} =3.71-3.73×10 ¹⁰ y and lowing results may have significant y were measured using β counting on which may have been contaminated with ess reliable methods ⁽³⁹ Li13), 2.15×10 ¹⁰ y <i>10</i> (1954Ar03), 2.1×10 ¹⁰ y 2 (1957Gl84), 2.17×10 ¹⁰ y (1961Mc12), 2.18×10 ¹⁰ y <i>14</i> (1983Pa11)		
122.845 ^{<i>a</i>} 4	1-	3.664 h <i>19</i>	A D I	FG I	$\%\beta^{-}=99.9$ $\mu=+0.318$ $J^{\pi}: J=1, a$	001 , 3.27×10 005 16; $\%\varepsilon=0.0$ 3; Q=-1.47 1 100 tomic beam (19)	y 5 ()95 <i>16</i> 965Wh	03). ft ratio (0.49) to 0 ⁺ at 1149.78 keV		

¹⁷⁶Lu Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
				and 2 ⁺ at 1226.65 keV states in ¹⁷⁶ Lu IT decay agrees with Alaga rule for
				$K^{\pi} = 0^{-}.$
				$\%\varepsilon$ from 1978He06.
				μ : Atomic beam, recalculated in 1989Ra17.
				Q: Atomic beam, recalculated in 19/9Er12, 1989Ra17. Other value: -2.39 4 (1978LeZA,1965Wh03).
				T _{1/2} : weighted average (reduced χ^2 =29) of 3.6832 h 7 (1990Ab02), 3.635 h 12 (1982La25), 3.635 h 3 (1981Lo12), 3.66 h 4 (1978He06), 3.5 h 2 (1965Av01), 3.684 h 6 (1963Sc22), 3.7 h 5 (1960Wi10), 3.71 h 4 (1958Be41), 3.67 h 3 (1945At02), and 3.6 h 4 (1935Mc06), using the <i>Limitation of Relative Statistical Weights method</i> (1988WoZO). The following results may have significant systematic errors because of less reliable used method: 3.63 h (1991Ca03), 3.8 h (1963Ra14), 4.0 h 1
				(1935Ma03), 1970Ve04, 1943Fl02.
184.1302 ^{&} 10	8-	80 ps 6	A DEFGHI	J^{π} : 184.13 γ M1+E2 to the 7 ⁻ state. g.s. rotational band member.
194.358 [°] 4	1+	35.0 ns 10	A D G I	J^{π} : 71.5 γ E1+M2 to 1 ⁻ state.
	-	2210 10 10		$T_{1/2}$; from $\gamma\gamma(t)$ in ¹⁷⁵ Lu(n, γ) E=thermal (1974An12).
233.100 ^c 4	2^{+}		A D G I	J^{π} : 38.7 γ M1+E2 to 1 ⁺ state.
235.767 ^a 4	3-		ABCD F	J^{π} : 112.9 γ E2 to 1 ⁻ state.
236.908 ^a 4	0^{-}		A D G	J^{π} : 114.1 γ M1 to 1 ⁻ state.
299.349 ^c 4	3+		AB D FG I	J^{π} : 66.2 M1+E2 to 2 ⁺ state.
305.260 ^{<i>a</i>} 4	2^{-}		ABCD FG	J^{π} : 182.4 γ M1 to 1 ⁻ state.
338.844 ⁶ 4	1^{+}		A D F	J^{π} : 144.5 γ M1+E2 to 1 ⁺ state.
372.492 [°] 4	4+		AB D FG I	J^{π} : 73.1 γ M1+E2 to 3 ⁺ state.
381.342 ^b 4	2^{+}		AB D G	J^{π} : 186.9 γ M1 to 1 ⁺ state.
386.571 ^e 4	1-		A D FG	J^{π} : 192.2 γ E1 to 1 ⁺ state.
388.877 <mark>&</mark> 4	9-	7.5 ps 11	A DE HI	J^{π} : 204.7 γ M1+E2 to 8 ⁻ state.
				$T_{1/2}$: from Coulomb excitation.
424.8908 ^u 20	8+	≤2 ns	A DF I	$T_{1/2}$: From (⁷ Li,X γ).
				J^{π} : 240.8 γ to 8 ⁻ state, 424.9 γ to 7 ⁻ state.
433.037 ^e 4	2-		ABCD fG	J^{π} : 310.2 γ M1 to 1 ⁻ state.
437.324 ^a 4	5-		ABCD ±	J^{n} : 201.6 γ E2 to 3 ⁻ state.
450.108 ⁰ 4	3+		ABCD FG	J^{π} : 217 γ M1 to 2 ⁺ state.
463.763 ^{<i>a</i>} 4	4-		ABCD F	J^{π} : 278 γ M1+E2 to 3 ⁻ state.
487.635° 4	5^+		ABDE	J^{π} : 188.3 γ E2 to 3 ⁺ state.
487.840° 11	8	≤6.9 ns	A fG I	J [*] : L=5 in (t,α) . K [*] =8 ⁺ bandhead.
501 861 ^e 1	2-		APCD EC	$I_{1/2}$: From (¹ L1,X γ). I^{π} : 71 Sec M1 to 2 ⁻ state
522.095^{b}	3 4+		ABCD FG	J = 71.07 M1 to 2 state.
533.085° 4	4.		ABCD FG	$J^*: 233.7\gamma$ M1 to 3° state.
563.9283 [*] 25 ≈578	(6) ⁻		ADG E	J^{n} : L=2 in (t, α). 563.9 γ M1(+E2) to 7^{-} .
591.773 ^c 4	6+		A D	J^{π} : 219.3 γ E2 to 4 ⁺ state.
595.745 ^e 4	4-		ABCD FG	J^{π} : 359.9 γ M1+E2 to 3 ⁻ state.
613.45 ^{&} 6	10-		E GHI	J^{π} : $K^{\pi}=7^{-}$ g.s. band member.
615.1 ^{<i>u</i>} 5	9+		FΙ	J^{π} : Band assignment.
635.196 ^p 4	4+	7.8 ns 4	AB D I	J^{π} : 335.8 γ M1+E2 to 3 ⁺ state, 147.5 γ M1 to 5 ⁺ state. T _{1/2} : weighted average of 7.8 ns 5 (1991Kl02) and 8.0 ns <i>10</i> (1974An12) in ¹⁷⁵ Lu(n, γ) E=thermal.
637.760 <i>f</i> 4	1-		A D F	J^{π} : 204.7 γ M1 to 2 ⁻ , 251.2 γ M1 to 1 ⁻ .
650.175 ^b 4	5+		AB D Fa	XREF: g(653)
	-		- 5	

¹⁷⁶Lu Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
				J^{π} : 277.7 γ M1 to 4 ⁺ state.
657.130 ^p 4	5+	<0.5 ns	A D g I	XREF: g(653)
				E(level): Adopted as a member of 4 ⁺ band, not as a bandhead of $K^{\pi}=5^+$ band [(n, γ) E=thermal], from observed coincidences between in-band transitions
				and the 336.0 keV transition which depopulates the 635.2 keV state, in-band
				branching ratios, and expected alignments for $K^{\pi}=4^+$ band in (⁷ Li,X γ).
and the state of the			_	J^{π} : 284.6 γ M1 to 4 ⁺ , 65.4 γ (M1+E2) to 6 ⁺ .
658.434 ^{<i>i</i>} 4	3-	6.3 ns <i>3</i>	ABCD Fg	XREF: g(653)
				J^{-1} : 223.47 M1+E2 to 2 , 153.07 M1 to 3 . Two: weighted average of 6.5 ns $\pm 3 - 10$ (1991K102) 6.3 ns 5 (1974An12) and
				6.3 ns 4 (1992Pe13).
$682.6^{\nu} 5$	9+		FG I	XREF: I(683)
C				J^{π} : L=5 in (t, α). Band assignment.
687.854 ^J 4	2-		ABDF	J^{π} : 301.3 γ M1 to 1 ⁻ state.
688.2 17	3,4		C	E(level): From (n,γ) E=res.
693 794 4	$(5)^{+}$		۵	J [*] : populated in ^{1*} Lu(n, γ) E=res. I ^{π} : 58 6 γ M1(+F2) to 4 ⁺ state
695.7 10	(5)		D	3 . 50.07 MI(112) to 1 state.
709.226 ^w 11	$(7)^{+}$		Α	J^{π} : 221.4 γ M1 to (8) ⁺ state, 709.2 γ to 7 ⁻ state.
709.5 ^{<i>p</i>} 8	6+		I	J^{π} : Band assignment.
710.0604 5	6 ⁻		A D F	J^{n} : 272.7 γ MI to 5 ⁻ state.
/14.9 0	3,4		DC	E(level). Weighted average from (n, γ) E=res and (n, γ) E=2-, 24-KeV. I^{π} , populated in ¹⁷⁵ Lu(n γ) E=res
715.419 ^e 4	5-		A D	J^{π} : 210.5 γ E2 to 3 ⁻ state.
722.901 ^g 4	4-	3.0 ns 7	ABCD FG	J^{π} : L=2 in (t, α). 64.5 γ M1+E2 to 3 ⁻ state. Band assignment.
	_			$T_{1/2}$: from 1992Pe13. Other value: <2 ns (1991Kl02).
724.689 ^a 6	//=		A D	J^{A} : 287.4 γ E2 to 5 ⁻ state.
$725.206^{\circ} 5$	$(7)^{-}$		A D	J^{n} : 161.3 γ (M1) to (6) ⁻ state.
734.358 9 4	3+		ABD	J^{π} : 99.1 γ M1+E2 to 4 ⁺ .
751.878 ^{<i>i</i>} 4	4-		ABCD F	J^{π} : 93.4 γ M1 to 3 ⁻ state.
757 4	(7)-		G	E(level): From (t,α) .
	- 1			J^{π} : L=4 in (t, α).
758.389 ^c 6	7+		A D	J ^{<i>n</i>} : Band assignment.
763.626 4	3-		ABCD	J^{n} : 330.6 γ M1 to 2 ⁻ state.
765.671 ^{<i>i</i>} 5	(6) ⁻		ADF	J^{n} : 765.7 γ M1 to 7 ⁻ state, 201.7 γ M1 to (6) ⁻ state.
772.0510 5	(6) ⁺		A D G	J^{n} : 284.4 γ M1 to 5 ⁺ state.
780.177 24	0^{-}		A	J^{A} : 657.3 γ (M1,E2) to 1 ⁻ state.
780.2317 4 787 4 ^P 7	4 7+		А	$J : 51.9\gamma$ M1+E2 to 5 state. I^{π} . Band assignment
788.213^{j} 4	, 4 ⁻		ABCD FG	J^{π} : 129.8v M1 to 3 ⁻ state. $K^{\pi}=4^{-}$ hand head assignment.
792.227 6	$(2)^+$		A D	J^{π} : 410.9 γ M1 to 2 ⁺ state, 259.2 γ (E2) to 4 ⁺ state.
796.632 [@] 8	1-		A D	J^{π} : 491.4 γ M1 to 2 ⁻ state, 559.7 γ M1 to 0 ⁻ state.
827.0 ^{<i>u</i>} 5	10^{+}		F I	J^{π} : Band assignment.
832.394 [@] 6	2-		A D	J^{π} : 709.6 γ M1(+E2) to 1 ⁻ state, 596.6 γ M1 to 3 ⁻ state.
833.7 <i>3</i>	3,4		BC	E(level): Weighted average from (n,γ) E=res and (n,γ) E=2-, 24-keV.
834 800 ^m 1	$(5)^{-}$		4 D F	J ^{**} : populated in 1 ^{**} Lu(n, γ) E=res. I ^{π} : 270 9 γ M1 to (6) ⁻ 834 8 γ F2 to 7 ⁻
838.624 ^g 3	5-	≤0.2 ns	A D	J^{π} : 838.69 E2 to 7 ⁻ g.s. 274.79 M1 to (6) ⁻ state. Band assignment.
	-			$T_{1/2}$: Using gamma ray induced Doppler broadening (GRID) technique – lower
				limit determined to be ≥ 6.9 ps in 1999Do03. Other value: 2.5 ps $<$ T _{1/2} >0.3 ns

Continued on next page (footnotes at end of table)

¹⁷⁶Lu Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
				in 1991Kl02, upper limit of 0.3 ns determined from delayed coincidences and a lower limit of 2.5 ps deduced from line shape of a high resolution measurement; <10 ns in $(p,n\gamma)$; 6.0 ps +10.0 –4.0 for either 838.64 or 921.47 or collective 870.00 keV level in Coulomb excitation (2000Va15).
843.407 ^h 4	3-		ABCD G	J^{π} : 410.4 γ M1 to 2 ⁻ , 120.5 γ M1(+E2) to 4 ⁻ . L=2 in (t, α).
848.228 ^e 6	6-		A D	J^{π} : 410.9 γ M1 to 5 ⁻ state.
851.219 9 5	5+		Α	J^{π} : 64.9 γ M1 to 4 ⁺ state.
854.661 ^y 6	$(7)^{+}$		Α	J^{π} : 854.6 γ E1 to 7 ⁻ , 428.8 γ (M1) to 8 ⁺ .
857.1 ^{<i>x</i>} 6	11-		I	J^{π} : $K^{\pi}=7^{-}$ g.s. band member.
860.544 ^J 4	4^{-}		ABCD F	J^{π} : 355.7 γ M1+E2 to 3 ⁻ state. 624.8 γ M1 to 3 ⁻ state.
$800.330^{\circ} 4$	2 5-			J^{-} : 072.07 M1(+E2) to 1 state, 307.07 (M1,E2) to 5 state.
$808.090^{\circ} 4$	$(5)^{-}$		AD D IG	J [*] : L=2 III (I, α). I ^{π} : 306 1 α (M1 E2) to (6) ⁻ state 870 0 α E2 to 7 ⁻ state
809.990 0 871.260 ^t 1	$(3)^+$			I^{π} : 214 12 M1 to 5 ⁺ state 236 12 M1 E2 to 4 ⁺ state
871.200 4	(+)			π_1 578 22 M1 to 2 ⁻ state, 410 72 M1 to 4 ⁻ state.
888.6 ^P 8	3 8+		Т	J^{*} . $S78.2\gamma$ M1 to 2 state, 419.7 γ M1 to 4 state. I^{π} . Band assignment
$897.0^{v}.5$	10^{+}		FG T	I^{π} : Band assignment.
903.4 10	10		B D	
908.237 ^{\$} 4	$(4)^{-}$		ABCD F	J^{π} : 185.3 γ M1+E2 to 4 ⁻ state.
909.64? ¹ 5	(2^{-})		A G	J^{π} : 672.7 γ to 0 ⁻ state, 673.9 γ to 3 ⁻ state.
921.464 <i>j</i> 5	(5)-	<0.2 ns	ABCD F	J^{π} : 357.5 γ (M1) to state (6) ⁻ . Band assignment.
928.5 10	$5^+,(2^+)$		В	E(level): from (n, γ) E=2-, 24-keV.
				J^{π} : populated in ¹⁷⁵ Lu(n, γ) E=2,24 keV res:av.
930.756 ⁰ 5	3+		A D	J^{π} : 549.4 γ M1 to 2 ⁺ state. 631.4 γ M1 to 3 ⁺ state.
938.396 ^b 7	$(7)^{+}$		A D	J^{π} : 346.6 γ (M1) to 6 ⁺ state. Band assignment.
941.065 ¹ 6	$(7)^{-}$		A F	J^{π} : 175.4 γ M1 to (6) ⁻ state. Band assignment.
945.012 ^h 4	4-		ABCD G	J^{π} : L=2 in (t, α). 222.1 γ M1 to 4 ⁻ state.
957.732 [@] 8	4-		AbcD	J^{π} : 721.9 γ M1 to 3 ⁻ state.
957.879 ^r 4	3-		AbcD fG	J^{π} : 299.5 γ M1 to 3 ⁻ state, 169.7 γ M1 to 4 ⁻ state.
959.2 10	(2)	07 2	b D	π 507.0 M1 (07 () 001.7 M1 (07 ()
960.180 4 062.873 <mark>8</mark> 16	(3) (6^{-})	0.7 ns 2	A D IG	J^{*} : $S2/.2\gamma$ M1 to 2 state, 301.7γ M1 to 3 state.
902.875° 10 972.506 ^m 7	$(0^{-})^{-}$		A F	I^{π} . Band assignment
973.750 5	$(5)^+$		AB D	J^{π} : 338.6 γ M1 to 4 ⁺ state, 316.6 γ to 5 ⁺ state.
985.555 ^z 4	4+	1.2 ns 3	A D	J^{π} : 251.2 γ M1 to 3 ⁺ state, 328.4 γ M1 to 5 ⁺ state.
988.147 ^f 6	5-		ABCD F	J^{π} : 392.4 γ M1 to 4 ⁻ state.
990.4 10	(3+)		D	J^{π} : 124.0 γ to 2 ⁺ state, 617.9 γ to 4 ⁺ state in (p,n γ).
1000.851 ⁿ 18	(6)-		A Fg	XREF: g(1006)
1002.742 ⁱ 8	(6 ⁻)		A g	XREF: g(1006)
1012 AD 0	0+		-	J^{n} : Band assignment.
1015.4^{P} 9 1015 3/30 7	9 ⁺ 4 ⁺			J ^{\sim} : Band assignment. I^{π} : 565 22 M1 to 3 ⁺ state
1018.1.3	$(3^+,4^+)$		B	E(level): from (n.y) $E=2$ 24-keV
1010.1 5	(5,1)		2	J^{π} : populated in ¹⁷⁵ Lu(n, γ) E=2.24 keV res:av.
1019.938 4	(4 ⁺)		A D	J^{π} : 362.8 γ (M1,E2) to 5 ⁺ state.
1029.661 ^d 6	$(2)^{-}$		A D F	J^{π} : 524.8 γ M1 to 3 ⁻ state, 643.1 γ M1(+E2) to 1 ⁻ state.
1031.0 <i>3</i>	(3 ⁻ ,4 ⁻)		BC	E(level): Weighted average from (n,γ) E=res and (n,γ) E=2-, 24-keV.
1022 260 7	(5)-			J [*] : populated in ¹⁷ JLu(n, γ) E=2,24 keV res:av.
1032.309 /	(3)		A G	J ^{-1} ; 197.57 (M11) to (5) state, 1052.47 to / g.s.
1042.516° 11 1046.3 10	2		D	J^{*} : $5/8.7\gamma$ M1 to 4 state.

Continued on next page (footnotes at end of table)

¹⁷⁶Lu Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XR	EF	Comments
1054.3 2	(3,4)		bC		E(level): Weighted average from (n,γ) E=res and (n,γ) E=2-, 24-keV.
10572	(0+)			~	J : populated in $\Box Lu(1,\gamma) \equiv res.$
10572 8	(0^{+})			G	E(level): From (t,α) .
1060 54 6	11+			в т	J ^{**} : Band assignment.
1000.3 0	11			r 1	J^{π} : Band assignment.
1061.1 16	$(2^{-}.5^{-})$		В	F	J^{π} : populated in ¹⁷⁵ Lu(n, γ) E=2.24 keV res:av.
1067.411 ^r 6	4-		AbCD		J^{π} : 109.5 γ M1 to (3) ⁻ state. Band assignment.
1068.975 ^h 6 1071 7 3	(5 ⁻)		Ab	G FG	J^{π} : 346.1 γ (M1) to 4 ⁻ state. Band assignment.
1079.9.3	$(5^{-}2^{-})$		BC	G	I^{π} , populated in ¹⁷⁵ Lu(n γ) E=2.24 keV restav
$1100 402^{d}$ 18	$(3)^{-}$		ARCD	F	I^{π} : 667 Ay M1(+F2) to 2 ⁻ state
1104.5 7	(3)		CD	G	J : 007.47 W1(+L2) to 2 - state.
1118.8 ^{&} 6 1120.3 7	12-		л	I	J^{π} : $K^{\pi} = 7^{-}$ g.s. band member.
1120.57			້		E(level): from (n, γ) E=res.
1131.8 ^v 6	11+			I	J^{π} : Band assignment.
1142.5 10			D		6
1159.7 <mark>P</mark> 8	10^{+}			I	J^{π} : Band assignment.
1164.1 10			D	G	
1167.0 17	(3,4)		С		J^{π} : populated in ¹⁷⁵ Lu(n, γ) E=res.
1182 5				G	E(level): From (t, α) .
1227.9 10			CD	G	
1237.4 10			CD	G	
1241.1 10			D		
1274.5 ³ 10 1277.8 10	(7+)		D D	G	J^{α} : L=5 in (t, α). Band assignment.
1294 ² 2	(4+)			G	E(level): From (t,α) . J ^{π} : Band assignment.
1301.4 10			D		
1314.0 ^{<i>u</i>} 7	12^{+}			I	J^{π} : Band assignment.
1326 <i>3</i>				G	E(level): From (t, α) .
1329.2 ^P 14	Π^{+}			1	J^{n} : Band assignment.
1349 5	(10)			G _	E(level): From (t, α) .
1351.75 4	(10^{+})	≤ 2 ns		I	J^{α} : 162.4 γ (E2) feeding this level from 12 ⁺ state at 1514.4 keV and possible two quasiparticle state configuration.
1370.7 10			D		possiole in a quaspartiere state configuration
1395.0 ⁴ 14	(5 ⁻)			G	J^{π} : L=2 in (t, α).
					E(level): From (t,α) .
1398.6 <mark>&</mark> 9	13-			I	J^{π} : $K^{\pi}=7^{-}$ g.s. band member.
1426.0 <i>1</i>			D	G	
1462.0 ³ 14	(8 ⁺)			G	J^{π} : L=5 in (t, α). Band assignment. E(level): From (t, α).
1510 ² 2	(3+)			G	J^{π} : Band assignment.
1514565	10+	212 (0		-	E(level): From (l, α) .
1514.5° 5	12*	312 ns 69		1	J^{*} : 200.3 γ M1 to 12' state. Four-quasiparticle isomeric state configuration. E.
1518 6 <mark>P</mark> 13	12+			т	$T_{1/2}$: From time difference spectra in ('L1,X γ).
15224 2	(6-)			c ¹	I_{π} : J = 2 in (t α)
1333 2				U	$J = L = 2 \text{ in } (I, \alpha).$ $F(\text{level}) \cdot \text{From } (I, \alpha)$
1569.5				G	E(level): From (t,α) .
1587 57 11	(14^{+})	40 /18 3		т	I^{π} , 73 0v (F2) to 12 ⁺ state. Consistent with the spin and parity at
1507.5 11	(11)	10 μο 5		-	s . (5.6) (22) to 12 state. Consistent with the spin and party at
				~ .	

Continued on next page (footnotes at end of table)

¹⁷⁶Lu Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
			near-degeneracy between the 13 ⁺ member of the $K^{\pi} = 8_1^+$ band at 1589 keV and the (14 ⁺) isomer at 1588 keV (⁷ Li,X γ).
			$T_{1/2}$: From time spectrum gated on the 162, 184, 241, 258, 402, 487, and 617 keV transitions in (⁷ Li,X γ).
1588.7 <mark>4</mark> 9	13+	GΙ	XREF: G(1593)
			J^{π} : Band assignment.
1617 5		G	E(level): From (t,α) .
1655 ³ 2	(9 ⁺)	G	J^{π} : L=5 in (t, α). Band assignment.
1(70.10		6	E(level): From (t, α) .
16/9/10		G	E(level): From (t, α) .
16894 7	(7^{-})	G	E(level): From (t,α) .
1693.5 ^{&} 12	14-	I	J^{π} : $K^{\pi}=7^{-}$ g.s. band member.
1730 ² 7	(5^{+})	G	E(level): From (t, α) .
			J^{π} : Band assignment.
1730.3 ^P 17	13+	I	J^{π} : Band assignment.
1960.7 <mark>P</mark> 17	14+	I	J^{π} : Band assignment.
2005.3 ^{&} 14	15^{-}	I	J^{π} : $K^{\pi}=7^{-}$ g.s. band member.
2329.4 ^{&} 16	16-	I	J^{π} : $K^{\pi}=7^{-}$ g.s. band member.
2671.3 ^{&} 17	(17 ⁻)	I	J^{π} : $K^{\pi}=7^{-}$ g.s. band member.
3021.3 ^{&} 19	(18^{-})	I	J^{π} : $K^{\pi} = 7^{-}$ g.s. band member.

[†] Deduced by evaluator from a least squares fit to the adopted γ -ray energies, except otherwise noted.

[‡] Assignments are based on rotational structure, on γ -ray multipolarities and decay patterns, and on L-transfers and experimental cross sections for the ¹⁷⁷Hf(t, α) (1981De28), and from 2-, 24-keV average neutron capture resonance in ¹⁷⁵Lu (1985Ho08). Specific arguments are given for bandheads. Configuration assignments are from ¹⁷⁵Lu(n, γ) E=thermal (1991Kl02).

- [#] From ¹⁷⁵Lu(n, γ) E=thermal (1991Kl02), unless otherwise specified.
- ^(a) Band(A): $K^{\pi}=0^{-}$. Configuration=((π 9/2(514))-(ν 9/2(924))). Rotational parameters: A=8.76, B=-9.94. Spin members of the band used in the fit: 0, 1, 2, 3.
- & Band(B): $K^{\pi}=7^{-}$ g.s. rotational band. Configuration=((π 7/2(404))+(ν 7/2(514)))). Rotational parameters: A=12.0, B=-3.91. Spin members of the band used in the fit: 7 to 10.
- ^{*a*} Band(C): $K^{\pi}=0^{-}$. Configuration=((π 7/2(404))-(ν 7/2(514))). Rotational parameters: A=11.3, B=-3.36. Spin members of the band used in the fit: 1, 3, 5.
- ^b Band(D): $K^{\pi}=1^+$. Configuration=((π 7/2(404))-(ν 9/2(624)))). Rotational parameters: A=10.6, B=16.3. Spin members of the band used in the fit: 1 to 4.
- ^{*c*} Band(E): $K^{\pi}=1^+$. Configuration=(($\pi 9/2(514)$)-($\nu 7/2(514)$)). Rotational parameters: A=10.8, B=-17.0. Spin members of the band used in the fit: 1 to 6.
- ^d Band(F): $K^{\pi}=2^{-}$. Configuration=((π 7/2(404))-(ν 3/2(512))). Rotational parameters: A=11.8. Spin members of the band used in the fit: 2, 3.
- ^{*e*} Band(G): $K^{\pi}=1^{-}$. Configuration=((π 5/2(402))-(ν 7/2(514))). Rotational parameters: A=12.0, B=-9.00. Spin members of the band used in the fit: 1 to 6.
- ^{*f*} Band(H): $K^{\pi}=1^{-}$. Configuration=((π 7/2(404))-(ν 5/2(512))). Rotational parameters: A=12.3, B=4.90. Spin members of the band used in the fit: 1 to 5.
- ^g Band(I): $K^{\pi}=4^{-}$. Configuration=((π 1/2(411))+(ν 7/2(514))). Rotational parameters: A=14.3, B=-55.5. Spin members of the band used in the fit: 4 to 6.
- ^{*h*} Band(J): $K^{\pi}=3^{-}$. Configuration=((π 1/2(411))-(ν 7/2(514))). Rotational parameters: A=13.2, B=-17.0. Spin members of the band used in the fit: 3 to 5.
- ^{*i*} Band(K): $K^{\pi}=3^{-}$. Configuration=((π 7/2(404))-(ν 1/2(510))). Rotational parameters: A=11.8, B=-3.35. Spin members of the band used in the fit: 3 to 5.
- ^{*j*} Band(L): K^{π} =4⁻. Configuration=((π 7/2(404))+(ν 1/2(510))). Rotational parameters: A=13.3. Spin members of the band used in

176Lu Levels (continued)

the fit: 4, 5.

- ^k Band(M): $K^{\pi}=6^{-}$. Configuration=((π 5/2(402))+(ν 7/2(514))). Rotational parameters: A=11.5. Spin members of the band used in the fit: 6, 7.
- ^{*l*} Band(N): $K^{\pi}=6^{-}$. Configuration=((π 7/2(404))+(ν 5/2(512))). Rotational parameters: A=12.5. Spin members of the band used in the fit: 6, 7.
- ^{*m*} Band(O): $K^{\pi}=5^{-}$. Configuration=((π 7/2(404))+(ν 3/2(512))). Rotational parameters: A=11.5. Spin members of the band used in the fit: 5, 6.
- ^{*n*} Band(P): $K^{\pi}=5^{-}$, γ -vibrational band Rotational parameters: A=10.9. Spin members of the band used in the fit: 5, 6.
- ^{*o*} Band(Q): $K^{\pi}=2^+$. Configuration=((π 5/2(402))-(ν 9/2(624))). Rotational parameters: A=10.9, B=-11.1. Spin members of the band used in the fit: 2 to 4.
- ^{*p*} Band(R): $K^{\pi} = 4^+$. Configuration=((π 1/2(541))+(ν 7/2(514))). Rotational parameters: A=5.86. Spin members of the band used in the fit: 4, 5.
- ^{*q*} Band(S): $K^{\pi}=3^+$. Configuration=((π 1/2(541))-(ν 7/2(514))). Rotational parameters: A=6.47, B=0.53. Spin members of the band used in the fit: 3 to 5.
- ^{*r*} Band(T): $K^{\pi}=3^{-}$. Configuration=((π 7/2(404))-(ν 1/2(521))). Rotational parameters: A=13.7. Spin members of the band used in the fit: 3, 4.
- ^s Band(u): $K^{\pi}=4^{-}$. Configuration=((π 7/2(404))+(ν 1/2(521))).
- ^t Band(v): $K^{\pi} = 4^+$. Configuration=(($\pi 9/2(514)$)-($\nu 1/2(510)$)).
- ^{*u*} Band(w): $K^{\pi}=8^+$. Configuration=((π 7/2(404))+(ν 9/2(624))). Rotational parameters: A=11.2, B=-3.24. Spin members of the band used in the fit: 8 to 11.
- ^{ν} Band(X): K^{π}=8⁺. Configuration=((π 9/2(514))+(ν 7/2(514))). Rotational parameters: A=11.1, B=-2.24. Spin members of the band used in the fit: 8 to 10.
- ^{*w*} Band(a): $K^{\pi}=7^+$. Configuration=(($\pi 9/2(514)$)+($\nu 5/2(512)$)).
- ^{*x*} Band(b): $K^{\pi}=7^+$. Configuration=((π 5/2(402))+(ν 9/2(624))).
- ^{*y*} Band(c): $K^{\pi}=7^+$. Configuration=((π 7/2(404))+(ν 7/2(633))).
- ^{*z*} Band(d): $K^{\pi}=4^+$. Configuration=((π 1/2(411))-(ν 9/2(624))).
- ¹ Band(e): $K^{\pi}=2^{-}$, γ -vibrational band.
- ² Band(U): $K^{\pi}=(0^+)$. Configuration=((π 7/2(523))-(ν 7/2(514))).
- ³ Band(V): $K^{\pi}=7^+$. Configuration=((π 7/2(523))+(ν 7/2(514))).
- ⁴ Band(W): $K^{\pi}=5^{-}$. Configuration=((π 3/2(411))+(ν 7/2(514))).
- ⁵ $K^{\pi} = 10^+$, configuration=(($\pi 9/2[514]$)+($\nu 11/2[505]$)).
- ⁶ $K^{\pi}=12^+$, possible configuration=((π ,7/2[402]) \otimes (v^3 , 9/2[624], 7/2[514],1/2[521])).
- ⁷ $K^{\pi} = (14^+)$, possible configuration= $((\pi, 7/2[402]) \otimes (v^3, 9/2[624], 7/2[514], 5/2[512]))$.

$\gamma(^{176}Lu)$

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	α^{a}	Comments
184.1302	8-	184.130 <i>1</i>	100	0.0	7-	M1+E2	1.15 9	0.500	B(M1)(W.u.)=0.051 6; B(E2)(W.u.)=8.8×10 ² 8
194 358	1+	71 516 1	100	122 845	1-	F1+M2	0.047.2	1 12	δ: other value: 0.42 <i>I</i> 2, Coulomb excitation. B(F1)(W µ)=7 9×10 ⁻⁶ 3: B(M2)(W µ)=15.7 <i>I</i> 5
233 100	2+	38 745 1	100	194 358	1+	M1+F2	0.128 4	13.7	$D(E1)((1.0.)-7.5\times10^{-5}), D(112)((1.0.)-15.7.15^{-5})$
235 767	3-	112 922 1	100	122.845	1-	E2	0.120 /	2.14	
236.908	0-	114.070 2	100	122.845	1-	M1		2.59	
299.349	3+	66.238 1	100 12	233.100	2+	M1+E2	0.13.2	12.5	
	U	104.985 2	23 3	194.358	1+	E2	0110 2	2.83	
305.260	2^{-}	69.498 2	10.7 24	235.767	3-	(M1)		10.8	
		182.422 1	100 10	122.845	1-	M1		0.687	
338.844	1^{+}	105.738 2	36 6	233.100	2^{+}	M1		3.22	
		144.486 2	100 11	194.358	1^{+}	M1+E2	0.35 6	1.27	
		216.015 ^b 9	12.8 <mark>b</mark> 19	122.845	1-				
372.492	4^{+}	73.140 /	64 6	299.349	3+	M1+E2	0.16.3	9.40	
		139.383 1	100 12	233.100	2^{+}	E2		0.982	
381.342	2^{+}	81.996 ^c 4	10 <i>3</i>	299.349	3+				
		148.241 <i>1</i>	28 <i>3</i>	233.100	2^{+}	M1		1.23	
		186.986 <i>1</i>	100 10	194.358	1^{+}	M1		0.642	
		258.51 [°] 5	3.7 9	122.845	1-				
386.571	1^{-}	81.301 4	0.8 3	305.260	2^{-}	M1		6.86	
		150.815 4	1.41 23	235.767	3-				
		153.466 <i>1</i>	38 4	233.100	2^{+}	E1		0.114	
		192.212 <i>1</i>	100 10	194.358	1^{+}	E1		0.0638	
		263.733 2	49 4	122.845	1-	M1+E2	0.9 1	0.189 8	
388.877	9-	204.746 ⁰ 3	100 ⁰ 11	184.1302	8-	M1+E2	0.54 17	0.44 3	$B(M1)(W.u.)=0.07 + 9-7; B(E2)(W.u.)=2.1 \times 10^2 + 28-21$
									δ : from Coulomb excitation.
		388.901 <i>19</i>	40 5	0.0	7-	(E2)		0.0358	B(E2)(W.u.)=27 19
424.8908	8+	240.760 2	100 9	184.1302	8-				
(22.027		424.893 4	44 6	0.0	7-			<i></i>	
433.037	2-	46.458 1	31 7	386.571	1-	M1+E2	0.074 10	6.42	
		133.683 2	6.5 7	299.349	3	EI		0.164	
		197.265 1	16.3 1/	235.767	3 2+	MI		0.553	
		199.926 1	3.9 4	233.100	2 · 1 +	F 1		0.0266	
		238.0/1 I 310.188.2	13.9 1/	194.338	1 · 1 -	E1 M1		0.0300	
137 324	5-	201 567 1	100 9	122.043	1 2-	E2		0.100	
+51.524	5	437 48 ^C A	1 43 25	235.707	5 7-	ĽZ		0.275	
450 108	3+	77.623°	7.0.18	372 492	, 4+				
150.100	5	150.763 2	12.0 14	299,349	3+	M1		1.17	
		214.349 3	39 4	235.767	3-	E1		0.0482	
			•		-				

н

γ (¹⁷⁶Lu) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	δ^{\dagger}	α^{a}	Comments
450.108	3+	217.002 1	100 10	233.100	2^{+}	M1		0.424	
463.763	4-	158.496 5	2.7 6	305.260	2-				
		227.997 1	100 10	235.767	3-	M1+E2	0.30 6	0.355	
487.635	5+	115.144 2	32 4	372.492	4+	M1(+E2)			
		188.287 <i>1</i>	100 10	299.349	3+	E2		0.345	
487.840	8+	65 [#]	100	424.8908	8^{+}				I_{γ} : Not reported.
		487.819 23	100 16	0.0	7^{-}				E_{γ} : Not present in (⁷ Li,X γ).
504.861	3-	71.840 1	100 14	433.037	2^{-}	M1		9.85	
		118.295 6	5.8 13	386.571	1-	(E2)		1.80	
		132.364 9	5.8 23	372.492	4+				
		205.531 6	10.1 13	299.349	3+				
		269.125 13	5.8 12	235.767	3-	(M1)		0.235	
		271.772 [@] 6	36 4	233.100	2^{+}				
		382.030 6	18.8 20	122.845	1-	(E2)			Mult.: Measured (M1,E2) multipolarity (n,γ) . Level scheme requires
					.+				(E2).
533.085	4-	160.589 2	5.5 6	372.492	4 ⁺	(M1,E2)		0.046	
5(2,0292	$\langle c \rangle =$	233.741 1	100 10	299.349	3'	MI M1(+E2)		0.346	
503.9283	(6)	563.944 <i>3</i>	100	0.0	/	MI(+E2)		0.200	
591.775	0 · 4 -	219.282 2	70.7	572.492 504.861	4 3-	E_2 M1(+E2)		0.208	
373.743	4	121 obc 2	107 10h 17	462 762	J 4-	$WII(\pm E2)$			
		131.99°° 3	4.9° 1/	403.703	4				
		158.405 0	≈5 0 ° 11	437.324	5 2-				
		206 307 5	9.8 11	433.037	2 3+				Mult : Measured (M1 E2) multipolarity in (n x). Level scheme requires
		290.397 3	0.5 10	279.349	5				E1.
		359.985 4	100 10	235.767	3-	M1+E2			
613.45	10^{-}	224.71 [‡] 9	54 [‡] 15	388.877	9-				
		429 24 7	100 10	184 1302	8-				
615.1	0+	126.3#	100 10	187.840	Q+				
015.1)	120.5		424 0000	0+				
		190.2"		424.8908	8				
		226.9"		388.877	9-				
635.196	4+	147.553 2	16.2 19	487.635	5+	M1		1.24	$B(M1)(W.u.) = 9.9 \times 10^{-5}$ 16
		185.080 3	2.6 5	450.108	3+	(M1)		0.660	$B(M1)(W.u.) = 8.0 \times 10^{-6}$ 18
		253.858 7	2.1 3	381.342	2+	E2		0.129	B(E2)(W.u.)=0.017/3
		335.851 1	100 11	299.349	3+	M1+E2			$B(M1)(W.u.)=3.7\times10^{-5}$ 5; $B(E2)(W.u.)=0.145$ 18
		402.109 15	≈0.9	233.100	2*				
637.760	1-	204.746 ⁰ 3	20.80 24	433.037	2-	M1		0.499	
		251.195 ^b 2	100 ⁰ 10	386.571	1^{-}	M1		0.284	

9

 $^{176}_{71} Lu_{105}$ -9

$\gamma(^{176}Lu)$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [†]	δ^{\dagger}	α ^{<i>a</i>}	Comments
650.175	5+	277.683 1	100	372.492	4+	M1		0.216	
657.130	5+	65.353 ^c 5	3.8 14	591.773	6+	(M1+E2)			
		169.500 4	3.4 4	487.635	5+	(M1,E2)			
		206.994 [°] 13	2.1 4	450.108	3+			0.000	D(14)(11) (11) (10) (175 (1))
	a-	284.641 1	100 10	372.492	4+	MI		0.202	B(M1)(W.u.)=0.001475.8
658.434	3-	153.557 2	3.9 4	504.861	3-	M1		1.11	$B(M1)(W.u.)=2.2\times10^{-3}$ 3
		194.656° 12	≈0.4 100.10	403.703	4	M1 + E2	0 27 8	0.260	$P(M1)(W_{11}) = 0.000162.24, P(E2)(W_{11}) = 0.10.6$
		223.405 I	100 10	455.057	ے 1 –	M1+E2	0.27 0	0.309	B(M1)(W.u.)=0.000105 24; B(E2)(W.u.)=0.100
		2/1.803 - 4	8.19	380.371	1	(E2)		0.104	B(E2)(W.U.)=0.048 /
		263.946 0	0.379	372.492	4 2-	(M1)		0.112	$P(M1)(W_{H}) = 2.0 \times 10^{-7} 6$
		359 083 3	404	299 349	2 3+	(1011)		0.115	D(1011)(10
		422.670.2	566	235 767	3-	M1		0.0701	$B(M1)(Wu) = 1.48 \times 10^{-6} 21$
		425.333 2	8.6 9	233.100	2^{+}			0.0701	
682.6	9+	193.8 [#]		487.840	8+				
		258.0 [#]		424.8908	8+				
687.854	2^{-}	182.981 2	37 4	504.861	3-	M1		0.682	
		254.824 4	31 <i>3</i>	433.037	2^{-}	M1		0.273	
		301.284 2	100 10	386.571	1-	M1		0.173	
		452.105 8	14.3 16	235.767	3-				
693.794	$(5)^{+}$	58.597 1	100	635.196	4+	M1(+E2)			
695.7		262.7 ^{&}	100	433.037	2-				
709.226	$(7)^{+}$	221.386 4	44 5	487.840	8+	M1		0.402	
		709.230 [@] 12	100 15	0.0	7-				
709.5	6+	52.0 [#]		657.130	5+				
		336.0 [#]		372.492	4+				
710.060	6-	246.305 5	27 3	463.763	4-				
515 410		272.729 3	100 9	437.324	5-	M1		0.227	
715.419	5-	119.678 1	100 10	595.745	4 ⁻	MI F2		2.26	
		210.550 3	20 3	372 402	3 4+	E2		0.238	
722 901	4-	64 474 1	100 12	658 434	3-	M1+F2	0.15.2	13.7	$B(M1)(W_{\rm H}) = 0.0017$ 5: $B(F2)(W_{\rm H}) = 4.1.16$
722.901		218.040.3	47.5	504.861	3-	1011 1 112	0.15 2	15.7	D(111)(11.1.)=0.0017 5; D(12)(11.1.1)
		259 154 ^{bc} 11	24^{b} 3	463 763	4-	(M1 E2)			
		$285\ 571^{b}\ 4$	$32^{b} 4$	437 324	5 ⁻	()			
		487.15.3	14.7.21	235.767	3-				
724.689	7-	287.364 4	100	437.324	5-	E2			Mult.: measured M1,E2 multipolarity in (n,γ) . Level scheme
									requires E2.
725.206	$(7)^{-}$	161.277 4	100	563.9283	(6)-	(M1)		0.969	

 $^{176}_{71}$ Lu₁₀₅-10

From ENSDF

 $^{176}_{71} Lu_{105}$ -10

$\gamma(^{176}Lu)$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	α^{a}	Comments
734.033	(7^{+})	309.142 3	100	424.8908	8+	(M1)		0.161	
734.358	3+	99.163 <i>1</i>	100 12	635.196	4+	M1+E2	0.19 4	3.85	
		435.07 <i>3</i>	10 3	299.349	3+				
751.878	4-	93.449 1	100 11	658.434	3-	M1		4.59	
750 200	-	246.994 12	13 5	504.861	3-				
758.389	7+	166.6/1° 21	18 8	591.773	6^+				
762 626	2-	2/0./30 4 167.976 <mark>0</mark> /	100 12 ~25	487.033	5				
703.020	3	258 744 8	≈ 2.5	595.745 504.861	4 3-	M1		0.262	
		330.597 2	100.9	433.037	2^{-}	M1(+E2)		0.202	
765.671	$(6)^{-}$	201.742 5	19.2 21	563.9283	$(6)^{-}$	M1		0.519	
		581.61 5	15 <i>3</i>	184.1302	8-				
		765.684 9	100 10	0.0	7^{-}	M1		0.0155	
772.051	$(6)^{+}$	284.418 3	100 11	487.635	5+	M1		0.202	
500 155	0-	399.56° 9	≈7	372.492	4+				
/80.1//	0	657.334 23 51.806 1	100	122.845	1	(M1,E2)	0 14 1	5 75 14	
780.231	4 7+	51.890 I	100	700.5	5 (+	MIT+E2	0.14 1	5.25 14	
/8/.4	/ ·	//.5"		/09.5	0 ·				
799 212	4-	129.5"	100	657.130	5' 2-	M/1		1 70	
702.227	4 (2)+	129.775 I	$\frac{100}{c7h}$ e	038.434 522.095	3 4+	M1 (E2)		1.79	Malter (M1 E2) from communication alocters data in (N1 (c)). Level
192.221	$(2)^{\cdot}$	259.15400 11	0/0 8	555.085	4.	(E2)			Mult.: (M1,E2) from conversion electron data in (N $<\gamma$). Level scheme requires E2
		342.16 4	33 7	450.108	3+				scheme requires 12.
		410.892 ^b 5	100 ^b 11	381.342	2^{+}	M1		0.0754	
		559.16 <i>3</i>	75 10	233.100	2^{+}				
		597.88 <i>3</i>	92 11	194.358	1^{+}				
704 400	4-	669.33 13	42 9	122.845	1-	2.61		0.0476	
/96.632	1	491.365 8	100 12	305.260	2	MI M1		0.04/6	
		539.714 IJ	100 12	230.906	0	1111		0.0343	
007.0	1.0+	$0/3.88^{\circ} 0$	94" 24	122.845	1				
827.0	10	144.1"		682.6	9				
		212.0"		615.1	9+ 0+				
000 004	a -	402.4"	aah (424.8908	8.	2.61		0.0400	
832.394	2	$527.1/4^{\circ} 20$	23° 4	305.260	2	MI		0.0400	
		595.57° 4	10.8° 15	236.908	0-				
		596.627° 6	54 <mark>0</mark> 7	235.767	3-	M1		0.0291	
024.000	(5)-	709.555 ^w 6	100 11	122.845	1-	M1(+E2)		0.001	
834.800	(5)-	270.869 3	14.3 15	563.9283	(6)-	M1		0.231	

11

$^{176}_{71} Lu_{105}$ -11

From ENSDF

γ (¹⁷⁶Lu) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	α ^a	Comments
834.800 838.624	(5) ⁻ 5 ⁻	834.810 7 115.722 3 181.489 4 203.413 2	100 <i>10</i> 2.6 <i>4</i> 3.5 <i>4</i> 6.5 <i>6</i>	0.0 722.901 657.130 635.196	7 ⁻ 4 ⁻ 5 ⁺ 4 ⁺	E2 (M1)	0.00573 2.49	B(M1)(W.u.)=0.00145 4 E_{γ} : Placement of 203.4 γ is from a questionable (6 ⁺) state at 838.61 keV in (n, γ) thermal. In (p,n γ), it is placed from 5 ⁻ state at 838.64 keV. Evaluator adopts this E_{γ} from 5 ⁻ state, based on relocation of the bandhead 5 ⁺ at 657.13 keV, of which (+6) state was a member in (n, γ) thermal, and questionable (6 ⁺) level.
		242.929 [°] 25	0.6 2	595.745	4-	MI	0.000	
		274.702 2 838.624 7	12.9 11	0.0 °	(6) 7 ⁻	E2	0.223	B(M1)(W.u.)=0.000530.35 B(E2)(W.u.)=0.089736.16
843.407	3-	120.499 <i>1</i>	100 9	722.901	4-	M1(+E2)		
		184.980 2	88 9	658.434	3-	M1	0.661	
		410.381 5	23 3 38 4	433.037	4 2-	M1 M1	0.295	
848.228	6-	132.815 ^c 2	≈80	715.419	5-			
		252.524 17	50 13	595.745	4-			
051 010	<u>-</u> +	410.892 ⁰ 5	100 ⁰ 11	437.324	5 ⁻	M1	0.0754	
851.219	2,	64.9704	100 31	/86.251 4	4' 4+	MI	13.2	
854.661	$(7)^{+}$	429.772.5	21.3	424.8908	4 ' 8 ⁺	(M1)	0.0671	
00 11001	(,)	854.614 23	100 9	0.0	7-	E1	0.00212	
857.1	11-	243.9 [#]		613.45	10-			
		468.4 [#]		388.877	9-			
860.544	4-	145.117 [°] 7	≈12 100 <i>10</i>	715.419	5 ⁻ 2-	M1 + E2		
		423.217 4	22 3	437.324	5 5 ⁻	(M1)	0.0698	
		561.25 3	20 3	299.349	3+	()		
		624.834 22	78 10	235.767	3-	M1	0.0259	
866.356	2+	131.99 ⁰⁰ 3	4.00 14	734.358	3 ⁺			
		228.344 18 361.485 5	3.0 0 13.0 <i>13</i>	504.861	1 3 ⁻			
		433.325 3	32 4	433.037	2-	E1	0.00865	
		479.756 [°] 6	12.0 13	386.571	1 ⁻	N/1	0.0402	
		485.006 0	100 13	338.844	2 · 1 ⁺	M1 M1	0.0492	
		566.990 15	41 5	299.349	3+	(M1,E2)		
		633.249 8	53 6	233.100	2^+	M1+E2		
868 090	5-	0/1.992 7 116 206 7	48 5 100 <i>11</i>	194.358 751.878	1' 4-	M1(+E2) M1	2.46	
500.070	5	110.200 1	100 11	,51.070		1711	2.10	

From ENSDF

γ ⁽¹⁷⁶ Lu) (continued)	
E_i (level) J_i^{π} E_{γ}^{\dagger} I_{γ}^{\dagger} E_f J_f^{π} Mult. ^{\dagger} δ^{\dagger} α^a Comments	
868.090 5 ⁻ 145.170 7 28 7 722.901 4 ⁻ 868.13 ^C 12 ~30 0.0 7 ⁻	
869.996 (5) ⁻ 306.069.6 7.1.8 563.9283 (6) ⁻ (M1 E2)	
869.994 <i>11</i> 100 <i>10</i> 0.0 7 ⁻ E2 0.00524	
871.260 (4) ⁺ 136.887 7 4.7 9 734.358 3 ⁺	
214.132 <i>I</i> 100 <i>I</i> 0 657.130 5 ⁺ M1 0.440	
236.075 2 31 4 635.196 4 ⁺ M1,E2	
$421.01^{\circ} 7 \approx 4 \qquad 450.108 3^{+}$	
883.460 3 ⁻ 419.701 3 45 4 463.763 4 ⁻ M1 0.0714	
578.198 8 100 11 305.260 2 M1 0.0315	
888.6 8^+ $101.5^{\#}$ 787.4 7^+	
179.0 [#] 709.5 6 ⁺	
$897.0 10^+ 214.0^{\#} 682.6 9^+$	
$282.4^{\#}$ 615.1 9 ⁺	
$408.0^{\#}$ 487.840 8^{+}	
903.4 $64.8^{\&}$ 100 $838.624.5^{-}$	
908.237 $(4)^-$ 156.362 3 22 3 751.878 4 ⁻ (E2,M1)	
185.331 <i>I</i> 100 <i>I</i> 0 722.901 4 ⁻ M1+E2 0.50 <i>I</i> 9 0.60 4	
909.64? (2 ⁻) 672.66 10 44 8 236.908 0 ⁻	
$673.88^{b} 6 100^{b} 25 235.767 3^{-1}$	
786.81 14 63 19 122.845 1	
921.464 (5) ⁻ 133.252 9 4.8 11 788.213 4 ⁻	
169.574 5 13 5 751.878 4-	
$357.539 \ 10$ 11.3 13 $563.9283 \ (6)^{-1}$ (M1) 0.109 B(M1)(W.u.)=0.0002089 7	
921.404 I J = 100 I U = 0.0 / (M1 + E2)	
950.750 5 04.509 0 177 800.550 2 (N11+E2) 106.400 ^C 11 ~ 6 734.358 3 ⁺	
$335\ 007\ 6$ 20 4 22 595 745 4 ⁻	
397.653° 13 \approx 7 533.085 4 ⁺	
425.884 3 39 4 504.861 3-	
480.661 <i>13</i> 14.8 <i>17</i> 450.108 3 ⁺ (M1) 0.0503	
549.389 <i>11</i> 100 <i>11</i> 381.342 2 ⁺ M1 0.0359	
558.237 19 39 4 372.492 4 ⁺ (M1,E2)	
631.396 <i>13</i> 57 6 299.349 3 ⁺ M1 0.0252	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
930.390 (7) 340.010 3100 10 391.775 0 (1017) $0.110938.36^{\circ} 6 56.11 0.0 7^{-}$	
941.065 (7) ⁻ 175.395 2 100 765.671 (6) ⁻ M1 0.767	

 $^{176}_{71} Lu_{105}$ -13

 $^{176}_{71} Lu_{105}$ -13

From ENSDF

$\gamma(^{176}Lu)$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _f	\mathbf{J}_{f}^{π}	Mult. [†]	α^{a}	Comments
945.012	4^{-}	222.106 2	100 10	722.901	4-	M1	0.398	
		286.56 ^C 5	3.8 15	658.434	3-			
		381.16 ^c 3	9.6 13	563.9283	(6)-			
957.732	4-	520.40 4	20.8 25	437.324	5-	(M1)	0.0413	
		652.57° 4	≈13	305.260	2-			
		658.38 4	15.3 19	299.349	3+	1.61	0.0100	
		721.968 /	100 10	235.767	3 2+	MI	0.0180	
057 870	2-	124.04° J	18.1 24	233.100	Z · 4-	M1	0.941	
937.879	3	109.071 2	14 0 11 <i>1</i>	763.626	4 3-	M1	0.841	
		234 977 4	21.3	703.020		(M1)	0.377	
		270.035.5	18.2	687 854	2-	(M1)	0.233	
		299.449 1	100 10	658.434	3-	M1	0.176	
		452.990 11	21 3	504.861	3-	(M1)	0.0586	
959.2		91.1 <mark>&</mark>	100	868.090	5-			
960.180	$(3)^{-}$	116.763 ^c 4	15 3	843.407	3-	(M1)	2.42	$B(M1)(W.u.)=0.0008 \ 3$
		125.350 ^C 17	13 <i>3</i>	834.800	$(5)^{-}$			
		171.976 2	43 4	788.213	4-			
		301.749 2	38 4	658.434	3-	M1	0.172	B(M1)(W.u.)=0.00011 4
		303.06 [°] 4	10.0 23	657.130	5+			
		527.174 <mark>6</mark> 20	43 <mark>6</mark> 8	433.037	2-	M1	0.0400	$B(M1)(W.u.)=1.4\times10^{-5}$ 14
		573.56 <i>3</i>	20.0 25	386.571	1-			
		660.80 <i>3</i>	73 8	299.349	3+			
		727.094 13	100 15	233.100	2+			
962.873	(6 ⁻)	114.593° 8	≈80	848.228	6-			
		239.96 3	100 48	722.901	4			
072 506	$(6)^{-}$	398.942 18	80 <i>12</i>	203.9283 824.800	(0) $(5)^{-}$			
972.300	(0)	072 / 8 /	100 18	0.0	$(3)_{7^{-}}$			
973 750	$(5)^{+}$	239 383 [°] 11	≈12	734 358	3+			
275.750	(5)	316.630.6	23.3	657.130	5 ⁺			
		338.556 3	100 9	635.196	4+	M1	0.126	
985.555	4+	142.146 ^C 9	≈7	843.407	3-			
		251.195 <mark>b</mark> 2	100 ^b 10	734.358	3+	M1	0.284	B(M1)(W.u.)=0.0004 4
		327.099 12	6.9 11	658.434	3-		0.20	
		328.432 5	19.4 <i>19</i>	657.130	5+	M1	0.137	B(M1)(W.u.)=6
		350.364 2	58 6	635.196	4+	M1	0.115	B(M1)(W.u.)=0.00014 7
		497.898 ^c 11	≈ 8	487.635	5+			
988.147	5^{-}	118.190 ^C 21	33	869.996	$(5)^{-}$			
		392.413 5	100 10	595.745	4-	M1	0.0851	

14

$^{176}_{71} Lu_{105}$ -14

$\gamma(^{176}Lu)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	α ^{<i>a</i>}
990.4	(3^{+})	124.0		866.356	2+		
	(-)	617.9 <mark>&c</mark>		372.492	4^{+}		
		691 0&c		299 349	3+		
1000.851	$(6)^{-}$	816.719 18	100 13	184.1302	8-	(E2.M1)	
10001001	(0)	1000.75 [°] 7	≈42	0.0	7-	(12,111)	
1002.742	(6 ⁻)	134.679 ^c 19	50 13	868.090	5-		
		164.120 ^b 7	40 ^b 11	838.624	5-		
		818.91 [°] 11	100 17	184.1302	8-		
		1002.5 ^C 3	≈70	0.0	7-		
1013.4	9+	124.4 [#]		888.6	8+		
		226.0 [#]		787.4	7+		
1015.343	4+	164.120 ^b 7	14 ^b 4	851.219	5+		
		565.241 9	100 11	450.108	3+	M1	0.0334
		642.890 [@] 14	71 11	372.492	4+	(E2)	0.0102
1019.938	(4^{+})	148.676 10	15 4	871.260	$(4)^{+}$	~ /	
		181.316 6	23 5	838.624	5-		
		285.571 ^b 4	42 ^b 5	734.358	3+		
		362.789 4	100 12	657.130	5+	(M1,E2)	
		384.726 9	31 4	635.196	4+	(M1,E2)	
1029.661	$(2)^{-}$	391.909 [°] 22	≈15	637.760	1-		
		524.817 13	40 5	504.861	3-	M1	0.0404
		596.627 ⁶ 6	100 ⁰ 13	433.037	2-	M1	0.0291
		643.115 [@] 10	70 10	386.571	1-	M1(+E2)	
		730.26 4	30 4	299.349	3+		
		792.75 5	≈25	236.908	0-		
1022 200	(5)-	906.78° 5	≈33	122.845	1-	A (1)	0.551
1032.369	(5)	197.547 10	1/4	834.800	(5)	(M1)	0.551
		244.219 10	38.5	700.215	4 1-		
		468 500 12	17 4	563 9283	$(6)^{-}$		
		1032.36.4	100 13	0.0	7-		
1042.516	5-	332.462 12	20 3	710.060	6-	(M1,E2)	
		578.743 17	100 12	463.763	4^{-}	M1	0.0315
1046.3		207.7 ^{&}	100	838.624	5-		
1060.5	11^{+}	233.7 [#]		827.0	10^{+}		
		445.0 [#]		615.1	9+		
1067.411	4-	109.541 6	56 11	957.879	3-	M1	2.91

15

$\gamma(^{176}Lu)$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	α ^{a}
1067.411	4-	303.793 ^c 6	44 8	763.626	3-		
		344.493 7	89 10	722.901	4-	(M1)	0.120
		408.946 12	67 11	658.434	3-		
		471.652 16	44 7	595.745	4-		
		562.56 3	100 12	504.861	3-		
1068.975	(5 ⁻)	147.518 3	100 27	921.464	$(5)^{-}$		
		317.099 10	23 4	/51.8/8	4	(M1)	0 1 1 0
		340.093 11 473 28 ^C Λ	~ 14	722.901 505 745	4 1-	$(\mathbf{W}\mathbf{I}\mathbf{I})$	0.119
1100 402	$(3)^{-}$	239 91 5	~14	860 544	4 4		
1100.102	(5)	595 57 ^b 4	24^{b} 3	504 861	3-		
		667.356 21	100 9	433.037	2^{-}	M1(+E2)	
1104.5		118.8 <mark>&</mark>		985.555	4+	~ /	
		144.4 <mark>&</mark>		960.180	$(3)^{-}$		
1118.8	12-	262.1 [#]		857.1	11-		
		505.6 [#]		613.45	10-		
1120.3		470.2 ^{&}		650.175	5+		
		587.1 <mark>&</mark>		533.085	4+		
1131.8	11^{+}	71.0 [#]		1060.5	11^{+}		
		234.6 [#]		897.0	10^{+}		
		305.0 [#]		827.0	10^{+}		
		449.2 [#]		682.6	9+		
1142.5		112.8 <mark>&</mark>	100	1029.661	$(2)^{-}$		
1159.7	10^{+}	146.0 [#]		1013.4	9+		
		271.5 [#]		888.6	8+		
1164.1		320.7 <mark>&</mark>	100	843.407	3-		
1227.9		493.5 <mark>&</mark>	100	734.358	3+		
1237.4		292.4 <mark>&</mark>	100	945.012	4-		
1241.1		402.5 <mark>&</mark>	100	838.624	5-		
1274.5	(7^{+})	902.0 <mark>&</mark>	100	372.492	4+		
1277.8		439.2 <mark>&</mark>	100	838.624	5-		
1301.4		567.0 <mark>&</mark>	100	734.358	3+		
1314.0	12^{+}	253.9 [#]		1060.5	11^{+}		
		486.8 [#]		827.0	10^{+}		

16

Adopted Levels, Gammas (continued)										
γ (¹⁷⁶ Lu) (continued)										
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	α^{a}	Comments		
1329.2	11^{+}	315.8 [#]	100	1013.4	9+					
1351.7	(10 ⁺)	454.6 [#]		897.0	10^{+}					
		524.8 [#]		827.0	10^{+}					
		669.0 [#]		682.6	9+					
		736.0 [#]		615.1	9+					
		738.3 [#]		613.45	10^{-}					
		863.2 [#]		487.840	8+					
		927.1 [#]		424.8908	8+					
		963.0 [#]		388.877	9-					
1370.7		735.5 <mark>&</mark>	100	635.196	4+					
1398.6	13-	280.2 [#]		1118.8	12-					
		541.1 [#]		857.1	11^{-}					
1514.5	12+	162.4 [#]		1351.7	(10 ⁺)	(E2)	0.9 4	Mult.: consistent with either M1(0.969) or E2 (0.576) in $({}^{7}Li,X\gamma)$. Decay scheme requires E2.		
		200.3 [#]		1314.0	12^{+}	M1	0.24 40	Mult.: From $(^{7}\text{Li}, X\gamma)$.		
		355.0 [#]		1159.7	10^{+}					
		382.3 [#]		1131.8	11^{+}					
		396.0 [#]		1118.8	12^{-}					
		454.2 [#]		1060.5	11^{+}					
		617.0 [#]		897.0	10+	(E2)		Mult.: (E2) or mixed (E1+M2), α (K)exp=0.010 3 in (⁷ Li,X γ). Decay scheme requires (E2).		
		658.0 <mark>#</mark>		857.1	11^{-}					
		687.1 [#]		827.0	10^{+}					
		1126.5 [#]		388.877	9-					
1518.6	12^{+}	358.9 [#]	100	1159.7	10^{+}					
1587.5	(14+)	73.0 [#]	100	1514.5	12+	(E2)	9 4	B(E2)(W.u.)=0.012 5 Mult.: $\alpha(\exp)=94$ is consist with both M1(9.51) and E2(12.2). The M1 alternative would imply a reduced transition strength of 1.3 x 10 ⁻⁷ W.u., more than two orders of magnitude weaker than expected for a K-allowed M1 transition. In contrast, the assumption of E2 multipolarity implies a reduced transition strength within the expected range.		
1588.7	13+	275.0 [#]		1314.0	12^{+}					
		527.9 [#]		1060.5	11+					
1693.5	14-	574.7 [#]	100	1118.8	12-					

From ENSDF

 $^{176}_{71} Lu_{105}$ -17

$\gamma(^{176}\text{Lu})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}
1730.3	13+	401.1 [#]	100	1329.2	11^{+}
1960.7	14^{+}	442.1 [#]	100	1518.6	12^{+}
2005.3	15-	606.7 [#]	100	1398.6	13-
2329.4	16-	635.9 [#]	100	1693.5	14^{-}
2671.3	(17 ⁻)	666.0 [#]	100	2005.3	15-
3021.3	(18 ⁻)	692.0 [#]	100	2329.4	16-

[†] From ¹⁷⁵Lu(n, γ) E=thermal, unless otherwise specified.

[‡] From Coulomb excitation. [#] From 176 Yb(7 Li,X γ).

^(a) Unresolved doublet. ^(a) From 176 Yb(p,n γ).

^{*a*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with "Frozen Orbitals" approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^b Multiply placed with undivided intensity.

^c Placement of transition in the level scheme is uncertain.

¹⁷⁶₇₁Lu₁₀₅

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{176}_{71} Lu_{105}$

¹⁷⁶₇₁Lu₁₀₅

 $^{176}_{71} Lu_{105}$

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

 $^{176}_{71} Lu_{105}$

 $^{176}_{71} Lu_{105}$

 $^{176}_{71} Lu_{105}$

Legend

Adopted Levels, Gammas

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Legend Level Scheme (continued) Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

 $--- \rightarrow \gamma$ Decay (Uncertain)

From ENSDF

 $^{176}_{71}$ Lu₁₀₅-33

33

¹⁷⁶₇₁Lu₁₀₅

Band(A): $K^{\pi}=0^{-}$

5- 1042.516

4- 957.732

3- 883.460

2- 832.394

<u>1-</u> 796.632

0- 780.177

 $^{176}_{71}Lu_{105}$

 $^{176}_{71} Lu_{105}$

Adopted Levels, Gammas (continued)

 $^{176}_{71} Lu_{105}$

 $^{176}_{71} Lu_{105}$

 $^{176}_{71} Lu_{105}$

(7+)

				Band(U): H	Κ ^π =(0 ⁺)	
				(5+)	1730	
						Band(V): $K^{\pi}=7^+$
						(9+) 1655
				(3+)	1510	
						(8 ⁺) 1462.0
				(4+)	1294	(7+) 1274 5
						(7) 1274.5
				(0 +)		
				(0)	1057	
		Band(d): $K^{n} = 4^{+}$				
		4 903.335 V	Band(e): $K^{\pi}=2^{-}$,			
			γ-vibrational band			
	Band(c): $\mathbf{K}^{\pi}=7^{+}$		(2) - 909.64			
	<u>(7)</u> ⁺ 854.661					
Band(b): $K^{\pi}=7^+$						
+) 734.033						
		1761				
		- <u>71</u> °L	^u 105			

Band(W): $K^{\pi}=5^{-}$

(7⁻) 1689

(6⁻) 1533

(5-) 1395.0

 $^{176}_{71} Lu_{105}$